UVA 11774 - Doom's Day(规律)
UVA 11774 - Doom's Day
题意:给定一个3^n*3^m的矩阵,要求每次按行优先取出,按列优先放回,问几次能回复原状
思路:没想到怎么推理,找规律答案是(n + m) / gcd(n, m),在topcoder上看到一个证明,例如以下:
We can associate at each cell a base 3-number, the log3(R) most significant digits is the index of the row of the cell and the log3(C) least significant digits is the index of his column.
What are the transformation now ?
position in row-major order is rC+c
position in column-major order is cR+r
We should shift down by log3(C) the most significant digits and shift up the least significant digits by log3(R).
C=3^6, R=3^4
now : rrrrcccccc (rrrr)(cccccc)
then: ccccccrrrr (cccc)(ccrrrr)
the first 4 digit are always the number of row (0-indexed) and the last 6 digit the number of column of the cell (0-indexed)
Now this process is valid for each possible r or c, so we can choose r=1 and c=0 and find a the length of this recurring cycle.
Calling L the length of this basic cycle, all other cycle are combination of this one so the only possible length are divisor of L, so the solution of our problem is (m+n)/L
rrrr=0001
cccccc=000000
day 0 : 0001000000 (0001)(000000)
day 1 : 0000000001 (0000)(000001)
day 2 : 0000010000 (0000)(010000)
day 3 : 0100000000 (0100)(000000)
day 4 : 0000000100 (0000)(000100)
day 5 : 0001000000 (0001)(000000)
For solving this problem we can find the the minimal x such that x*n mod (n+m)=0, this imply x=gcd(n, n+m)=gcd(n, m).
The solution of our original problem is (n+m)/x or (n+m)/gcd(n,m).
然后看了之后还是不理解啊,有哪个大神理解这个推理过程求指导一下。。
代码:
#include <stdio.h>
#include <string.h> int t;
long long n, m; long long gcd(long long a, long long b) {
if (!b) return a;
return gcd(b, a % b);
} int main() {
int cas = 0;
scanf("%d", &t);
while (t--) {
scanf("%lld%lld", &n, &m);
printf("Case %d: %lld\n", ++cas, (n + m) / gcd(n, m));
}
return 0;
}
UVA 11774 - Doom's Day(规律)的更多相关文章
- UVA - 11774 Doom's Day
看样例猜结论hhhhhh,竟然蒙对了..(正确性待证明) #include<bits/stdc++.h> #define ll long long using namespace std; ...
- UVa 11774 (置换 找规律) Doom's Day
我看大多数人的博客只说了一句:找规律得答案为(n + m) / gcd(n, m) 不过神题的题解还须神人写.. We can associate at each cell a base 3-numb ...
- 紫书 习题 10-13 UVa 11526(打表找规律+分步枚举)
首先看这道题目,我预感商数肯定是有规律的排列的,于是我打表找一下规律 100 / 1 = 100 100 / 2 = 50 100 / 3 = 33 100 / 4 = 25 100 / 5 = ...
- UVa 102 - Ecological Bin Packing(规律,统计)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- UVA 816 - Abbott's Revenge(BFS)
UVA 816 - Abbott's Revenge option=com_onlinejudge&Itemid=8&page=show_problem&category=59 ...
- UVa 808 (建坐标系、找规律) Bee Breeding
题意: 如图,按照图中的规律给这些格子编号.给出两个格子的编号,求从一个格子到另一个格子的最少步数.(一步只能穿过有有公共边的格子) 分析: 根据高中数学知识,选任意两个不共线的向量,就能表示平面上所 ...
- uva 11825 Hackers' Crackdown (状压dp,子集枚举)
题目链接:uva 11825 题意: 你是一个黑客,侵入了n台计算机(每台计算机有同样的n种服务),对每台计算机,你能够选择终止一项服务,则他与其相邻的这项服务都终止.你的目标是让很多其它的服务瘫痪( ...
- UVA 10831 - Gerg's Cake(数论)
UVA 10831 - Gerg's Cake 题目链接 题意:说白了就是给定a, p.问有没有存在x^2 % p = a的解 思路:求出勒让德标记.推断假设大于等于0,就是有解,小于0无解 代码: ...
- UVA 12103 - Leonardo's Notebook(数论置换群)
UVA 12103 - Leonardo's Notebook 题目链接 题意:给定一个字母置换B.求是否存在A使得A^2=B 思路:随意一个长为 L 的置换的k次幂,会把自己分裂成gcd(L,k) ...
随机推荐
- 每个Android开发者必须知道的资源集锦
英文原文:Resources every Android developer must know 随着 Android 平台持续惊人的增长,越来越多的开发人员开始工作于 Android 应用程序.而且 ...
- java过滤html标签函数
public static String Html2Text(String inputString) { String htmlStr = inputString; //含h ...
- 伤不起的戴尔台式机XPS8700脆弱的蓝牙
http://en.community.dell.com/support-forums/desktop/f/3514/t/19520747.aspx 1.报价仅仅包含主机,并且不带音响(speaker ...
- ReentrantLock可重入锁的使用场景(转)
摘要 从使用场景的角度出发来介绍对ReentrantLock的使用,相对来说容易理解一些. 场景1:如果发现该操作已经在执行中则不再执行(有状态执行) a.用在定时任务时,如果任务执行时间可能超过下次 ...
- mixpanel实验教程(2)
六.发送邮件和推送通知 选择该用户前面的 checkbox,点击 Send A Notification button,从下拉列表中选择 Email Message/Push Notifiaction ...
- windows服务的创建、安装和调试
1.创建 windows服务 项目 文件 -> 新建项目 -> 已安装的模板 -> Visual C# -> windows ,在右侧窗口选择"windows 服 ...
- POJ 1753 位运算+枚举
题意: 给出4*4的棋盘,只有黑棋和白棋,问你最少几步可以使棋子的颜色一样. 游戏规则是:如果翻动一个棋子,则该棋子上下左右的棋子也会翻一面,棋子正反面颜色相反. 思路: 都是暴搜枚举. 第一种方法: ...
- pygame系列_游戏中的事件
先看一下我做的demo: 当玩家按下键盘上的:上,下,左,右键的时候,后台会打印出玩家所按键的数字值,而图形会随之移动 这是客观上面存在的现象. 那么啥是事件呢? 你叫我做出定义,我不知道,我只能举个 ...
- 建立qemu桥接的网络连接
转载请注明出处谢谢:http://www.openext.org/2014/07/qemu-kvm-bridge-00 安装桥接工具:sudo apt-get install bridge-u ...
- cocos2d 创建一个黑白纹理
@interface myGrayTexture : CCTexture2D // @param exposure 曝光 +(id) textureWithFile:(NSString*) file ...