After some thought, I do not believe that pooling operations are responsible for the translation invariant property in CNNs. I believe that invariance (at least to translation) is due to the convolution filters (not specifically the pooling) and due to the fully-connected layer.

For instance, let's use the Fig. 1 as reference:

The blue volume represents the input image, while the green and yellow volumes represent layer 1 and layer 2 output activation volumes (see CS231n Convolutional Neural Networks for Visual Recognition if you are not familiar with these volumes). At the end, we have a fully-connected layer that is connected to all activation points of the yellow volume.

These volumes are build using a convolution plus a pooling operation. The pooling operation reduces the height and width of these volumes, while the increasing number of filters in each layer increases the volume depth.

For the sake of the argument, let's suppose that we have very "ludic" filters, as show in Fig. 2:

  • the first layer filters (which will generate the green volume) detect eyes, noses and other basic shapes (in real CNNs, first layer filters will match lines and very basic textures);
  • The second layer filters (which will generate the yellow volume) detect faces, legs and other objects that are aggregations of the first layer filters. Again, this is only an example: real life convolution filters may detect objects that have no meaning to humans.

Now suppose that there is a face at one of the corners of the image (represented by two red and a magenta point). The two eyes are detected by the first filter, and therefore will represent two activations at the first slice of the green volume. The same happens for the nose, except that it is detected for the second filter and it appears at the second slice. Next, the face filter will find that there are two eyes and a nose next to each other, and it generates an activation at the yellow volume (within the same region of the face at the input image). Finally, the fully-connected layer detects that there is a face (and maybe a leg and an arm detected by other filters) and it outputs that it has detected an human body.

Now suppose that the face has moved to another corner of the image, as shown in Fig. 3:

The same number of activations occurs in this example, however they occur in a different region of the green and yellow volumes. Therefore, any activation point at the first slice of the yellow volume means that a face was detected, INDEPENDENTLY of the face location. Then the fully-connected layer is responsible to "translate" a face and two arms to an human body. In both examples, an activation was received at one of the fully-connected neurons. However, in each example, the activation path inside the FC layer was different, meaning that a correct learning at the FC layer is essential to ensure the invariance property.

It must be noticed that the polling operation only "compresses" the activation volumes, if there was no polling in this example, an activation at the first slice of the yellow volume would still mean a face.

In conclusion, what makes a CNN invariant to object translation is the architecture of the neural network: the convolution filters and the fully-connected layer. Additionally, I believe that if a CNN is trained showing faces only at one corner, during the learning process, the fully-connected layer may become insensitive to faces in other corners.

source:

https://www.quora.com/How-is-a-convolutional-neural-network-able-to-learn-invariant-features/answer/Jean-Da-Rolt

<转>卷积神经网络是如何学习到平移不变的特征的更多相关文章

  1. 深度学习之卷积神经网络(CNN)

    卷积神经网络(CNN)因为在图像识别任务中大放异彩,而广为人知,近几年卷积神经网络在文本处理中也有了比较好的应用.我用TextCnn来做文本分类的任务,相比TextRnn,训练速度要快非常多,准确性也 ...

  2. TensorFlow学习笔记(四)图像识别与卷积神经网络

    一.卷积神经网络简介 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. ...

  3. 经典卷积神经网络的学习(一)—— AlexNet

    AlexNet 为卷积神经网络和深度学习正名,以绝对优势拿下 ILSVRC 2012 年冠军,引起了学术界的极大关注,掀起了深度学习研究的热潮. AlexNet 在 ILSVRC 数据集上达到 16. ...

  4. 【RS】Automatic recommendation technology for learning resources with convolutional neural network - 基于卷积神经网络的学习资源自动推荐技术

    [论文标题]Automatic recommendation technology for learning resources with convolutional neural network ( ...

  5. Python CNN卷积神经网络代码实现

    # -*- coding: utf-8 -*- """ Created on Wed Nov 21 17:32:28 2018 @author: zhen "& ...

  6. Python之TensorFlow的卷积神经网络-5

    一.卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度 ...

  7. TensorFlow实战之实现AlexNet经典卷积神经网络

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet ...

  8. 卷积神经网络之AlexNet

    由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注. 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷 ...

  9. 卷积神经网络(CNN)基础介绍

    本文是对卷积神经网络的基础进行介绍,主要内容包含卷积神经网络概念.卷积神经网络结构.卷积神经网络求解.卷积神经网络LeNet-5结构分析.卷积神经网络注意事项. 一.卷积神经网络概念 上世纪60年代. ...

随机推荐

  1. Code First :使用Entity. Framework编程(7) ----转发 收藏

    第7章 高级概念 The Code First modeling functionality that you have seen so far should be enough to get you ...

  2. 推荐15款响应式的 jQuery Lightbox 插件

    利用现代 Web 技术,网络变得越来越轻巧与.模态框是突出展现内容的重要形式,能够让用户聚焦到重要的内容上去.在这个列表中,我们编制了15款响应式的 jQuery 灯箱库,这将有助于开发人员创建和设计 ...

  3. [python]初试页面抓取——抓取沪深股市交易龙虎榜数据

    [python]抓取沪深股市交易龙虎榜数据 python 3.5.0下运行 没做自动建立files文件夹,需要手动在py文件目录下建立files文件夹后运行 #coding=utf-8 import ...

  4. Android 更新UI的几种方式

    1.Activity的 runOnUiThread textView = (TextView) findViewById( R.id.tv ); new Thread(new Runnable() { ...

  5. iOS开发之功能模块--本地序列化

    下面只展示项目开发中,本地序列化的示例代码: AuthenticationManager.h #import <Foundation/Foundation.h> #import " ...

  6. 史上最全的ASP.NET MVC路由配置

    MVC将一个Web应用分解为:Model.View和Controller.ASP.NET MVC框架提供了一个可以代替ASP.NETWebForm的基于MVC设计模式的应用. AD:51CTO 网+ ...

  7. SQL SERVER CHAR ( integer_expression )各版本返回值差异的案例

    我们都知道CHAR(integer_expression)将ASCII代码转换为字符.当integer_expression介于 0 和 255 之间的整数.如果该整数表达式不在此范围内,将返回 NU ...

  8. 使用Attribute校验对象属性数据是否合法

    一.前言 说来惭愧,做了几年ASP.NET最近才有机会使用MVC开发生产项目.项目中新增.编辑表单提交存在大量服务端数据格式校验,各种if else显得代码过于繁琐,特别是表单数据比较多的时候尤为恶心 ...

  9. [MySQL Reference Manual]14 InnoDB存储引擎

    14 InnoDB存储引擎 14 InnoDB存储引擎 14.1 InnoDB说明 14.1.1 InnoDB作为默认存储引擎 14.1.1.1 存储引擎的趋势 14.1.1.2 InnoDB变成默认 ...

  10. jQuery validator自定义

    项目中接触到validator,记录下 jQuery.validator.addMethod("isStrongPwd", function(value, element){ va ...