转载自:https://elasticstack.blog.csdn.net/article/details/114383426

在今天的文章中,我们将详述如何使用 Logstash 来解析 JSON 文件的日志,并把它导入到 Elasticsearch 中。在之前的文章 “Logstash:Data转换,分析,提取,丰富及核心操作” 也有提到过,但是没有具体的例子。总体说来解析 JSON 文件的日志有两种方法:

    在 file input 里使用 JSON codec
在 file input 里不使用 JSON codec,但是在 filter 的部分使用 JSON filter 我们把 JSON 格式的数据解析并导入到 Elasticsearch 的流程如下: 准备数据 我们准备了如下的数据: sample.json {"id": 4,"timestamp":"2019-06-10T18:01:32Z","paymentType":"Visa","name":"Cary Boyes","gender":"Male","ip_address":"223.113.73.232","purpose":"Grocery","country":"Pakistan","pastEvents":[{"eventId":7,"transactionId":"63941-950"},{"eventId":8,"transactionId":"55926-0011"}],"age":46}
{"id": 5,"timestamp":"2020-02-18T12:27:35Z","paymentType":"Visa","name":"Betteanne Diament","gender":"Female","ip_address":"159.148.102.98","purpose":"Computers","country":"Brazil","pastEvents":[{"eventId":9,"transactionId":"76436-101"},{"eventId":10,"transactionId":"55154-3330"}],"age":41} 构建 Logstash 配置文件
使用 json codec input {
file {
path => [ "/Users/liuxg/data/logstash_json/sample.json" ]
start_position => "beginning"
sincedb_path => "/dev/null"
codec => "json"
}
} output {
stdout {
codec => rubydebug
}
} 我们运行 Logstash: sudo ./bin/logstash -f logstash_json.conf 上面的命令输出的结果为: 从上面的结果中,我们可以看出来文档被正确地解析。 使用 JSON filter 我们可以在 file input 中不使用任何的 code,但是我们可以可以使用 JSON filter 来完成解析的工作: logstash_json_fileter.conf input {
file {
path => [ "/Users/liuxg/data/logstash_json/sample.json" ]
start_position => "beginning"
sincedb_path => "/dev/null"
}
} filter {
json {
source => "message"
} } output {
stdout {
codec => rubydebug
}
} 在上面,我们添加了 filter 这个部分。我们使用了 json 这个过滤器来完成对 JSON 格式的解析。重新运行我们的 Logstash。我们可以看到如下的输出: 在上面,我们可以看到一个叫做 message 的字段。这个字段显然它会占存储空间。我们可以把它删除掉。同时,我们也可以去掉那些不需要的元字段以节省空间。 logstash_json_fileter.conf input {
file {
path => [ "/Users/liuxg/data/logstash_json/sample.json" ]
start_position => "beginning"
sincedb_path => "/dev/null"
}
} filter {
json {
source => "message"
} if [paymentType] == "Mastercard" {
drop{}
} mutate {
remove_field => ["message", "path", "host", "@version"]
} } output {
stdout {
codec => rubydebug
}
} 在上面,我们检查 paymentType 是否为 Mastercard,如果是的话,我们把整个事件丢弃。同时我们删除不需要的字段,比如 message, path 等。重新运行 Logstash。我们可以看到如下的输出: 显然这次的输出比刚才的要干净很多。你可能已经注意到 @timestamp 的值和 timestamp 的值不太一样。在 Kibana 中,我们经常会使用 @timestamp 作为事件的时间标签。我们可以做如下的处理: logstash_json_fileter.conf input {
file {
path => [ "/Users/liuxg/data/logstash_json/sample.json" ]
start_position => "beginning"
sincedb_path => "/dev/null"
}
} filter {
json {
source => "message"
} if [paymentType] == "Mastercard" {
drop{}
} date {
match => [ "timestamp", "ISO8601" ]
locale => en
} mutate {
remove_field => ["message", "path", "host", "@version", "timestamp"]
} } output {
stdout {
codec => rubydebug
}
} 在上面,我们添加了 date 过滤器来解析时间。同时我们也删除 timestamp 这个字段。我们得到的结果是: 从上面我们可以看出来 @timestamp 的时间现在是时间的 timestamp 字段的时间。 在上面,我们看到 postEvent 是一个数组。如果我们想把这个数组拆分,并把其中的每一个事件作为一个分别的事件。我们可以使用 split 过滤器来完成。 logstash_json_fileter.conf input {
file {
path => [ "/Users/liuxg/data/logstash_json/sample.json" ]
start_position => "beginning"
sincedb_path => "/dev/null"
}
} filter {
json {
source => "message"
} if [paymentType] == "Mastercard" {
drop{}
} date {
match => [ "timestamp", "ISO8601" ]
locale => en
} mutate {
remove_field => ["message", "path", "host", "@version", "timestamp"]
} split {
field => "[pastEvents]"
} } output {
stdout {
codec => rubydebug
}
} 从上面我们可以看出来 postEvents 数组被拆分,并形成多个文档。上面的最终文档还是有些美中不足:eventId 及 transactionId 还是处于 pastEvents 对象之下。我们想把它移到和 id 同一级的位置。为此,我们做如下的修改: logstash_json_fileter.conf input {
file {
path => [ "/Users/liuxg/data/logstash_json/sample.json" ]
start_position => "beginning"
sincedb_path => "/dev/null"
}
} filter {
json {
source => "message"
} if [paymentType] == "Mastercard" {
drop{}
} date {
match => [ "timestamp", "ISO8601" ]
locale => en
} split {
field => "[pastEvents]"
} mutate {
add_field => {
"eventId" => "%{[pastEvents][eventId]}"
"transactionId" => "%{[pastEvents][transactionId]}"
} remove_field => ["message", "path", "host", "@version", "timestamp", "pastEvents"]
}
} output {
stdout {
codec => rubydebug
} elasticsearch {
index => "logstash_json"
}
} 重新运行 Logstash。我们可以看到如下的输出: 在上面,我们把 eventId 及 transactionId 移到文档的根下面,并删除 pastEvents 这个字段。我们同时也把文档导入到 Elasticsearch 中。 我们可以在 Elasticsearch 中对文档进行搜索: GET logstash_json/_search {
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 4,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "logstash_json",
"_type" : "_doc",
"_id" : "JXZRAHgBoLC90rTy6jNl",
"_score" : 1.0,
"_source" : {
"gender" : "Female",
"@timestamp" : "2020-02-18T12:27:35.000Z",
"id" : 5,
"country" : "Brazil",
"name" : "Betteanne Diament",
"paymentType" : "Visa",
"transactionId" : "76436-101",
"eventId" : "9",
"ip_address" : "159.148.102.98",
"age" : 41,
"purpose" : "Computers"
}
},
{
"_index" : "logstash_json",
"_type" : "_doc",
"_id" : "KHZRAHgBoLC90rTy6jNl",
"_score" : 1.0,
"_source" : {
"gender" : "Male",
"@timestamp" : "2019-06-10T18:01:32.000Z",
"id" : 4,
"country" : "Pakistan",
"name" : "Cary Boyes",
"paymentType" : "Visa",
"transactionId" : "55926-0011",
"eventId" : "8",
"ip_address" : "223.113.73.232",
"age" : 46,
"purpose" : "Grocery"
}
},
...

Logstash:解析 JSON 文件并导入到 Elasticsearch 中的更多相关文章

  1. Logstash:把MySQL数据导入到Elasticsearch中

    Logstash:把MySQL数据导入到Elasticsearch中 前提条件 需要安装好Elasticsearch及Kibana. MySQL安装 根据不同的操作系统我们分别对MySQL进行安装.我 ...

  2. 使用Logstash把MySQL数据导入到Elasticsearch中

    总结:这种适合把已有的MySQL数据导入到Elasticsearch中 有一个csv文件,把里面的数据通过Navicat Premium 软件导入到数据表中,共有998条数据 文件下载地址:https ...

  3. Android--------使用gson解析json文件

    ##使用gson解析json文件 **json的格式有两种:** **1. {}类型,及数据用{}包含:** **2. []类型,即数据用[]包含:** 下面用个例子,简单的介绍gson如何解析jso ...

  4. JAVA简便解析json文件

    JAVA简便解析json文件 首先放上我要解析的json文件: { "resultcode":"200", "reason":"S ...

  5. Logstash解析Json array

    logstash解析json数组是一种常见的需求,我以网上一组数据为例来描述 我们的数据test.json内容如下:(此处我linux上的json文本需要是compact的) {"type& ...

  6. python脚本解析json文件

    python脚本解析json文件 没写完.但是有效果.初次尝试,写的比较不简洁... 比较烦的地方在于: 1,中文编码: pSpecs.decode('raw_unicode_escape') 2,花 ...

  7. 使用google-gson类库解析json文件

    使用google-gson类库解析json文件 使用JsonParser解析器来解析字符串和输入流,变成json对象 代码如下: public class Readjson { public stat ...

  8. 安卓解析JSON文件

    安卓解析JSON文件 根据JOSN文件的格式,文件只有两种数据,一是对象数据,以 {}为分隔,二是数组,以[]分隔 以下介绍安卓如何解析一个JSON文件,该文件存放在assets目录下,即:asset ...

  9. Java解析JSON文件的方法

    http://blog.sina.com.cn/s/blog_628cc2b70101dydc.html java读取文件的方法 http://www.cnblogs.com/lovebread/ar ...

随机推荐

  1. dynamic + shardingsphere(4.1.1) 实现动态分库分表

    1. 主要依赖: <dependency> <groupId>com.baomidou</groupId> <artifactId>dynamic-da ...

  2. HMS Core安全检测服务如何帮助大学新生防范电信诈骗?

    一年一度的高考结束了,很多学生即将离开父母,一个人踏入大学生活,但由于人生阅历较少,容易被不法分子盯上. 每年开学季也是大一新生遭受诈骗的高峰期,以下是一些常见的案例.有的骗子会让新生下载注册一些恶意 ...

  3. Mybatis-Generator 自定义注释

    继承DefaultCommentGenerator 或者CommentGenerator package com.zhianchen.mysqlremark.toword.config;import ...

  4. 聊聊 C++ 中的四种类型转换符

    一:背景 在玩 C 的时候,经常会用 void* 来指向一段内存地址开端,然后再将其强转成尺度更小的 char* 或 int* 来丈量一段内存,参考如下代码: int main() { void* p ...

  5. 2022年字节跳动基础架构前端实习生凉经(4轮技术面+hr面)

    技术一面 原文链接:https://juejin.cn/post/7120516854203809829 因为我之前的项目经验有开发小程序的,所以一开始就问了小程序的问题 1.小程序onload和on ...

  6. ajax02_封装自己的jQuery库和ajax请求

    封装自己的ajax类库 首先封装自己的 jQuery库 启发:css的元素选择器思想 简单的代码实现 function jQuery(selector){ if(typeof selector == ...

  7. typescript关于postgres数据库的API封装

    文章结构     1 新建 postgres.ts 文件     2 配置文件说明     3 依赖引用说明     4 API使用示例   1 新建 postgres.ts 文件,代码如下: imp ...

  8. Netty-ProtobufVarint32

    效果 ProtobufVarint32LengthFieldPrepender编码器用于在数据最前面添加Varint32,表示数据长度 ProtobufVarint32FrameDecoder是相对应 ...

  9. 8000字讲透OBSA原理与应用实践

    摘要:OBSA项目是围绕OBS建立的大数据和AI生态,其在不断的发展和完善中,目前有如下子项目:hadoop-obs项目和flink-obs项目. 文章作者:存储服务产品部开发者支持团队 OBS存储服 ...

  10. SQL及常见的三种类型注释

    SQL(Structure Query Language)语言是数据库的核心语言. SQL的发展是从1974年开始的,其发展过程如下:1974年-----由Boyce和Chamberlin提出,当时称 ...