LGP5204题解
@CF1327F
最小值看着有点怪,先转化成最大值吧。。。反正没啥区别。。。
考虑把最大值相同的区间和限制为这个最大值的区间都拿出来。然后离散化。问题变为让所有区间都满足最值为 \(c\)。
考虑 DP。设 \(dp[n][k]\) 表示到序列上的第 \(n\) 个位置后,上一个 \(c\) 在第 \(k\) 个位置。
设 \(L[n]\) 表示右端点为 \(n\) 的区间中,左端点最靠右的那个的左端点。如果没有就为 \(0\)。
转移:
\]
\]
可以直接令 \(dp[n]\) 继承 \(dp[n-1]\),然后动态维护这个有值的区间。每次操作的时候只需要支持全局乘和单点加就行了。
可以通过打标记的方法将复杂度降低至期望 \(O(n)\),具体见代码。
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<ctime>
typedef unsigned ui;
typedef __uint128_t LL;
typedef unsigned long long ull;
const ui M=1e5+5,mod=1e9+7;
ui n,k,c[M],V[M],iV[M],cl[M];std::vector<ui>t[M],Q[M];
struct Hash_Table{
const ui P[20]={
110881,581551,319477,140869,307759,536729,791159,503851,614693,375127,
450299,263429,300761,796303,397373,732731,847009,913687,435401,665201
};
ui mod;ull B;
ui cnt,h[1000000];
struct Node{
ui V,nx;
}t[M];
inline void init(){
ui id=rand()%20;
mod=P[id];B=((LL(1)<<64)+mod-1)/mod;
}
inline ui Find(const ui&x){
for(ui E=h[x-mod*ui(LL(B)*x>>64)];E;E=t[E].nx)if(t[E].V==x)return E;return-1;
}
inline void Insert(const ui&x){
ui&head=h[x-mod*ui(LL(B)*x>>64)];t[++cnt]=(Node){x,head};head=cnt;
}
}Hash;
ui L(1),R(0),q[M];
inline ui max(const ui&a,const ui&b){
return a>b?a:b;
}
inline ui Solve(const ui&x){
static ui L[M],q[M],p[M],dp[M],pre1[M],pre2[M];
const ui&v=V[x]-1,&iv=iV[x],&len=t[x].size();
for(ui id(1),i=0;i<Q[x].size();++i){
while(id<len&&t[x][id]<Q[x][i])++id;pre1[i]=id;
}
for(ui id(1),i=0;i<Q[x].size();++i){
while(id<len&&t[x][id]<=Q[x][i]+k-1)++id;pre2[i]=id-1;
}
for(ui i=0;i<len;++i)L[i]=q[i]=p[i]=0;
for(ui i=0;i<Q[x].size();++i)L[pre2[i]]=max(L[pre2[i]],pre1[i]);
ui l(0),sum(1),mul(1);dp[0]=1;
for(ui i=1;i<len;++i){
while(l<L[i-1]){
while(q[l]--)mul=1ull*mul*v%mod;while(p[l]--)mul=1ull*mul*iv%mod;
sum=(sum+1ull*(mod-mul)*dp[l++])%mod;
}
dp[i]=sum;sum=(1ull*sum*v+dp[i])%mod;++q[L[i-1]];++p[i];
}
while(l<L[len-1]){
while(q[l]--)mul=1ull*mul*v%mod;while(p[l]--)mul=1ull*mul*iv%mod;
sum=(sum+1ull*(mod-mul)*dp[l++])%mod;
}
return sum;
}
inline ui pow(ui a,ui b){
ui ans(1);for(;b;b>>=1,a=1ull*a*a%mod)if(b&1)ans=1ull*ans*a%mod;return ans;
}
inline void swap(ui&a,ui&b){
ui c=a;a=b;b=c;
}
inline void getinv(){
static ui s[M],t[M];const ui&n=Hash.cnt;s[0]=1;
for(ui i=1;i<=n;++i)t[i]=V[i]-1,s[i]=1ull*s[i-1]*t[i]%mod;s[n]=pow(s[n],mod-2);
for(ui i=n;i>=1;--i)swap(s[i],s[i-1]),s[i]=1ull*s[i]*s[i-1]%mod,s[i-1]=1ull*s[i-1]*t[i]%mod;
for(ui i=1;i<=n;++i)iV[i]=s[i];
}
signed main(){
srand(time(NULL));srand(rand()*rand());
ui ans(1);
scanf("%u%u",&n,&k);Hash.init();
for(ui i=1;i<=n-k+1;++i){
scanf("%u",c+i);c[i]=1000000000-c[i]+1;
cl[i]=Hash.Find(c[i]);
if(!~cl[i])Hash.Insert(c[i]),V[Hash.cnt]=c[i],t[Hash.cnt].push_back(0),cl[i]=Hash.cnt;
Q[cl[i]].push_back(i);
}
for(ui i=1;i<=n;++i){
if(L<=R&&q[L]+k<=i)++L;
if(i+k-1<=n){
while(L<=R&&c[q[R]]>=c[i])--R;q[++R]=i;
}
t[cl[q[L]]].push_back(i);
}
getinv();
for(ui i=1;i<=Hash.cnt;++i)ans=1ull*ans*Solve(i)%mod;printf("%u",ans);
}
LGP5204题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- java短信接入
1,注册一个中间公司的短信平台(比如网建) 2,找到密匙 3,找到链接案例 4,复制代码 下载jar包 import java.io.UnsupportedEncodingException;imp ...
- Docker的资源控制管理
Docker的资源控制管理 1.CPU控制 2.对内存使用进行限制 3.对磁盘I/O配额控制的限制 1.CPU控制: cgroups,是一个非常强大的linux内核工具,他不仅可以限制被namespa ...
- linux13
ansible-playbook实现MySQL的二进制部署 Ansible playbook实现apache批量部署,并对不同主机提供以各自IP地址为内容的index.html http的报文结构和状 ...
- 系统C盘空间严重的不足的几个清理方法
大家在电脑使用久了以后,往往会遇到C盘空间不足的问题,这很可能进一步导致磁盘空间不足,软件无法正常运行,甚至电脑严重卡顿等问题. 下面给大家分享一些我自己在C盘空间不足过程中搜集的一些清理C盘空间的实 ...
- Solution -「Gym 102759C」Economic One-way Roads
\(\mathcal{Description}\) Link. 给定一个含 \(n\) 个点 \(m\) 条边的简单无向图,每条边的两种定向方法各有权值,求使得图强连通且定向权值和最小的方法. ...
- Solution -「NOI 2021」「洛谷 P7740」机器人游戏
\(\mathcal{Description}\) Link. 自己去读题面叭~ \(\mathcal{Solution}\) 首先,参悟[样例解释 #2].一种暴力的思路即为钦定集合 \ ...
- Solution -「ACM-ICPC BJ 2002」「POJ 1322」Chocolate
\(\mathcal{Description}\) Link. \(c\) 种口味的的巧克力,每种个数无限.每次取出一个,取 \(n\) 次,求恰有 \(m\) 个口味出现奇数次的概率. \( ...
- 原来VIM还可以这样玩
文章目录 配置文件vimrc vim 状态栏 状态栏配置内容 状态栏常用信息 显示状态栏 终端安全色 vimrc 配置文件 推荐 vi/vim命令大全 vim参阅 配置文件vimrc 在vim文件中执 ...
- Spring系列18:Resource接口及内置实现
本文内容 Resource接口的定义 Resource接口的内置实现 ResourceLoader接口 ResourceLoaderAware 接口 Resource接口的定义 Java 的标准 ja ...
- 麦克风阵列波束形成之DSB原理与实现
语音识别有近场和远场之分,且很多场景下都会用到麦克风阵列(micphone array).所谓麦克风阵列是一组位于空间不同位置的麦克风按一定的形状规则布置形成的阵列,是对空间传播声音信号进行空间采样的 ...