背景

当数据规模越来越大,存储成本也水涨船高。随着时间推移,数据热度分布往往呈 2⁄8 原则,即 80% 的访问集中在 20% 的数据上。对于那不经常访问的 80% 数据来说,使用多个 SSD 来存储真是巨大的浪费,需要将冷数据迁移到其他存储成本更低的系统里。这时 JuiceFS 成了理想之选,成本下降 20 倍,同时又提供跟 HDFS 一样高性能的元数据能力(避免Metastore 遍历元数据时雪崩),大量扫描冷数据时也有很高的吞吐量。如果 80% 的数据转移到 JuiceFS 上来,整体成本可节省 90%。如果再给 JuiceFS 提供 适当的空间做缓存,还可以完整替换 HDFS (20% 的热数据通过 JuiceFS 管理的缓存盘来服务,也可以有极高的性能)。

2019 年里,我们就实施过几个这样的案例。当数据迁移到 JuiceFS 上之后,HDFS 容量降下来了,就需要做好缩容才能最终把存储成本降下来。扩容大家都做过,但是缩容很多人还不熟悉,下面我们就详细说说如何做好 HDFS 缩容,尤其是这个背景下的缩容。

三种缩容方案

第一种缩容方法,如果 DataNode 的节点数目比较多,并且允许缩减存储空间的同时缩减 CPU 和内存资源,则可以缩掉若干个 DataNode 节点,直接使用 HDFS 提供的 decommission。这是最常见的方法,缩减过程中涉及大量数据的跨节点迁移,会产生大量的内网流量可能影响线上负载,需要运维人员保持密切关注和手动调优,通常需要一两周的时间。如果集群只剩 3 个 DataNode 节点,或者上面的 CPU 或者 内存资源不能同步缩减时,就不能用这个方法了。

第二种缩容方法,即在保持 DataNode 节点数不变的情况下,缩减每个节点上的磁盘空间,可以修改 DataNode 上的 dfs.data.dir参数,删掉一个或者多个磁盘目录,然后等待 HDFS 自动补充副本。这个方法统一也会导致节点间的大量数据移动,会产生大量的内网流量可能影响线上负载,需要运维人员保持密切关注和手动调优,可能也需要一两周时间。此外,如果数据只有 2 副本,相对会比较危险,一旦删除一个磁盘目录时正好有节点出问题或者某块磁盘坏掉,极有可能造成数据缺失。

以上两种方法都会产生大量网络流量,可能影响线上服务,并且会增加丢失数据的风险。本文提供第三种方法,怎么在缩容的同时,尽量避免产生的内网流量影响线上工作负载,同时尽量减少缩容过程中数据丢失的风险。

方案分析

首先我们看一下 DataNode 在磁盘上的目录结构:

└── dn
├── current
│ ├── BP-847673977-192.168.0.120-1559552771699
│ │ ├── current
│ │ │ ├── dfsUsed
│ │ │ ├── finalized
│ │ │ │ ├── subdir0
│ │ │ │ │ ├── subdir1
│ │ │ │ │ │ ├── blk_1073742303
│ │ │ │ │ │ ├── blk_1073742303_1479.meta
│ │ │ ├── rbw
│ │ │ └── VERSION
│ │ ├── scanner.cursor
│ │ └── tmp
│ └── VERSION
└── in_use.lock
  • BP-847673977-192.168.0.120-1559552771699:这是块池目录,如果以 Federation 方式部署的时候,会有多个块池目录。
  • dfsUsed:保存的是磁盘的使用统计数据,每 10 分钟刷新一次。
  • finalized 和 rbw 目录:这两个都是用于存储数据块的,finalized 放的是已经完成写入的数据块,rbw 是正在写入的数据块。每个数据块对应 2 个文件,blk 文件存放数据,另外一个以 meta 结尾的存放校验和等元数据。
  • VERSION 文件:主要包含布局版本、集群 ID、DataNode ID、块池 ID 等信息。
  • scanner.cursor 文件:DataNode 会定期的对每个 blk 文件做校验,这个文件是用来记录校验到哪个位置的。
  • 不难看出所有的数据文件都存在 finalizedrbw 里面,并且同一个 DataNode 上面不会存在相同 Block ID 的数据文件。因此完全可以通过迁移 blk 文件的方式来将一块磁盘上面的数据移动到另外一块磁盘上,然后在卸载此磁盘来达到缩容的目的。

缩容步骤

本文示例的 HDFS 是 CDH 5.16 版本,使用 ClouderaManager 管理集群。集群只有 3 个节点,每个节点有多块 SSD 盘,数据两副本,存储利用率很低,每个节点都可以卸载掉一块磁盘,但是无法使用前面两种常见的缩容方法,同时缩容过程要尽可能可能减小对线上服务的影响。

以下操作均是针对单一 DataNode 的操作,其他 DataNode 也需要按照以下步骤执行(可以适当并行)

  1. 选择磁盘。选择需要被卸载的数据盘和接收数据的数据盘,注意要确保接收数据的磁盘剩余空间够大于被卸载磁盘上的数据。这里假设:

被卸载磁盘:/dfs1,此磁盘上的 DataNode 数据目录:/dfs1/dfs/dn

数据接收盘:/dfs,此磁盘上的 DataNode 数据目录:/dfs/dfs/dn

  1. 第一次复制数据。从 dfs.data.dir 里面挑选出在被卸载磁盘上面的目录,然后将此目录全量拷贝到接收数据盘上,为了尽量减少对 IO 的占用,用 ionicersync 的方式拷贝数据,确保不阻塞高优先级的任务。
ionice -c 2 -n 7 rsync -au /dfs1/dfs/dn/ /dfs/shrink_temp/dn
  1. 需要保证数据都被拷贝过去了,所以需要将 DataNode 停掉。可以通过 ClouderaManager 界面关闭 DataNode。

  2. 第二次增量复制数据。重复步骤 2,将在步骤 2 和步骤 3 之间的新增数据增量更新到接收盘上。增量数据会比较少,估计能很快完成。

ionice -c 2 -n 7 rsync -au /dfs1/dfs/dn/ /dfs/shrink_temp/dn
  1. 合并目录。此时被卸载盘上的数据都已经复制到接收盘上,但是数据还在原来的文件夹里面。如果同一块磁盘上面有两个 DataNode 数据目录的话,会导致 HDFS 容量计算重复,因此需要合并。可以通过 rsync 的硬链的方式将数据拷贝过去,这样不涉及真正的数据拷贝,执行非常快,同时将拷贝过去的源数据删除。检查剩余数据是否有 blk 文件,没有就合并完成。
ionice -c 2 -n 7 rsync -au --link-dest=/dfs/shrink_temp/dn --ignore-existing --remove-source-files /dfs/shrink_temp/dn/ /dfs/dfs/dn
  1. 通过 ClouderaManager 修改 dfs.data.dir 配置项,删除卸载磁盘上的数据目录。

  2. 通过 ClouderaManager 启动 DataNode,并检查 HDFS 的状态。

sudo -u hdfs hdfs fsck /

为什么不直接将被卸载盘的数据复制合并到接收盘的 DataNode 数据目录里面呢? 这是因为,在第一次拷贝的时候,DataNode 仍然在运行,因此 DataNode 会定期检查副本数量,此时拷贝过去的数据算是额外副本,有可能会被 DataNode 删除掉。

整个缩容过程中 DataNode 停止的时间只是步骤 4 和步骤 5 所需时间。步骤 4 是增量拷贝,速度很快,步骤 5 只是文件元数据操作,同样很快。

以上步骤看起来比较多,手动操作会容易出错,因此我们将以上缩容过程写了一个脚本(部分操作依赖 Hadoop 发行版的 API,目前支持 CDH5),请下载setup-hadoop.py,运行命令,并按照提示输入进行缩容:

python setup-hadoop.py shrink_datanode

未来改进

在上面的缩容过程里,需要将数据是从一块磁盘完整地拷贝到另外一块磁盘,需要它有足够的剩余空间,另外也可能导致 DataNode 内磁盘间数据不均衡。未来可以改进下这个缩容过程,在复制数据时根据某个规则将 blk 文件复制到多块盘,确保多块磁盘之间的数据均衡。

如有帮助的话欢迎关注我们项目 Juicedata/JuiceFS 哟! (0ᴗ0✿)

怎么做 HDFS 的原地平滑缩容?的更多相关文章

  1. 通过Dapr实现一个简单的基于.net的微服务电商系统(十一)——一步一步教你如何撸Dapr之自动扩/缩容

    上一篇我们讲到了dapr提供的bindings,通过绑定可以让我们的程序轻装上阵,在极端情况下几乎不需要集成任何sdk,仅需要通过httpclient+text.json即可完成对外部组件的调用,这样 ...

  2. Mycat节点扩缩容及高可用集群方案

    数据迁移与扩容实践: 工具目前从 mycat1.6,准备工作:1.mycat 所在环境安装 mysql 客户端程序. 2.mycat 的 lib 目录下添加 mysql 的 jdbc 驱动包. 3.对 ...

  3. 023.掌握Pod-Pod扩容和缩容

    一 Pod的扩容和缩容 Kubernetes对Pod的扩缩容操作提供了手动和自动两种模式,手动模式通过执行kubectl scale命令或通过RESTful API对一个Deployment/RC进行 ...

  4. 生产调优4 HDFS-集群扩容及缩容(含服务器间数据均衡)

    目录 HDFS-集群扩容及缩容 添加白名单 配置白名单的步骤 二次配置白名单 增加新服务器 需求 环境准备 服役新节点具体步骤 问题1 服务器间数据均衡 问题2 105是怎么关联到集群的 服务器间数据 ...

  5. Redis Cluster 自动化安装,扩容和缩容

    Redis Cluster 自动化安装,扩容和缩容 之前写过一篇基于python的redis集群自动化安装的实现,基于纯命令的集群实现还是相当繁琐的,因此官方提供了redis-trib.rb这个工具虽 ...

  6. k8s Pod 扩容和缩容

    在生产环境下,在面临服务需要扩容的场景时,可以使用Deployment/RC的Scale机制来实现.Kubernetes支持对Pod的手动扩容和自动扩容. 手动扩容缩容 通过执行扩容命令,对某个dep ...

  7. 基于Ambari的WebUI实现服务缩容

    基于Ambari的WebUI实现服务缩容 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.实现服务的扩容 1>.进入到主机的管理界面 2>.查看主机的信息概览 3&g ...

  8. map的自动扩容与手动缩容

    map的自动扩容与手动缩容 首先还是提出问题:扩容和缩容有什么用?为什么需要扩容和缩容? 在想解答这个问题之前,首先还是需要了解一下go语言中的map go语言中的map与Java中的map实现还是有 ...

  9. LVM划分磁盘及扩容缩容

    lvm:logical volume monitor 逻辑卷管理器 作用: 采用lvm划分磁盘:磁盘空间不够时,方便扩展磁盘.物理卷加到卷组时被划分等大的pe,即pv是由众多pe构成.pe是卷组的最小 ...

随机推荐

  1. JAVA中获取不同系统的换行符和获取系统路径路径分割符

    简介 JAVA具有多平台特征,一次开发,多平台运行,主要依据JVM,但是不同的操作系统中换行符和分割符不同,故需要根据不同的操作系统去获取不同的符号. JAVA代码 @Test public void ...

  2. LockSupport、wait()、notify()

    LockSupport 名词解释 LockSupport是一个在JUC包里的线程阻塞工具类,所有的方法都是静态方法,主要用途是让线程在任意位置阻塞,广泛应用在AQS和各种JUC的锁中. 代码 publ ...

  3. linux中统计文件中一个字符串出现的次数

    要统计一个字符串出现的次数,这里现提供自己常用两种方法: 1. 使用vim统计 用vim打开目标文件,在命令模式下,输入 :%s/objStr//gn 2. 使用grep: grep -o objSt ...

  4. idea导入mavenJar、mavenWeb项目

    两种项目都是一样的,都是maven项目,所以主要是找到pom.xml,项目最好先放在idea的工作目录下,且工作目录最好为英文 1.打开idea,选择import project 2.把项目放到ide ...

  5. 操作系统实验一:进程管理(含成功运行C语言源代码)

    目录 操作系统实验一:进程管理 1.实验目的 2.实验内容 3.实验准备 3.1.1进程的含义 3.1.2进程的状态 3.1.3进程状态之间的转换 3.2 进程控制块PCB 3.2.1进程控制块的作用 ...

  6. Python小游戏之 - 飞机大战 !

    用Python写的"飞机大战"小游戏 源代码如下: # coding=utf-8 import random import os import pygame # 用一个常量来存储屏 ...

  7. swagger 2.0

    1.引入jar包 <dependency> <groupId>io.springfox</groupId> <artifactId>springfox- ...

  8. HTML表格总结

    知识小记: 表格的主要目的:用于HTML展示数据,不适用于布局. 表格由行的单元格组成,没有列,常识上的"列"的个数取决于行中单元格的个数. 表格本来就很丑,颜色线条美化交给css ...

  9. 使用Helm安装harbor

    使用nfs共享存储搭建的pvc(此次都放在一个vpc下): harbor使用nodePort方式部署,不使用ssl: 准备工作: 准备好harbor用的pvc: 安装好helm,添加好可用源: 因为使 ...

  10. 【C# 线程】RPC中常见的Stub| marshalling怎么理解

    RPC服务的基本架构图如上,可以很清楚地看到,一个完整的RPC架构里面包含了四个核心的组件,分别是Client ,Server,Client Stub以及Server Stub,这个Stub大家可以理 ...