A city's skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you are given the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).

The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi], where Li and Ri are the x coordinates of the left and right edge of the ith building, respectively, and Hi is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX0 < Hi ≤ INT_MAX, and Ri - Li > 0. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.

For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ] .

The output is a list of "key points" (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ] that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.

For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ].

Notes:

  • The number of buildings in any input list is guaranteed to be in the range [0, 10000].
  • The input list is already sorted in ascending order by the left x position Li.
  • The output list must be sorted by the x position.
  • There must be no consecutive horizontal lines of equal height in the output skyline. For instance, [...[2 3], [4 5], [7 5], [11 5], [12 7]...] is not acceptable; the three lines of height 5 should be merged into one in the final output as such: [...[2 3], [4 5], [12 7], ...]

Credits:
Special thanks to @stellari for adding this problem, creating these two awesome images and all test cases.

https://leetcode.com/problems/the-skyline-problem/

分别将每个线段的左边节点与右边节点存到新的vector height中,根据x坐标值排序,然后遍历求拐点。求拐点的时候用一个最大化heap来保存当前的楼顶高度,遇到左边节点,就在heap中插入高度信息,遇到右边节点就从heap中删除高度。分别用pre与cur来表示之前的高度与当前的高度,当cur != pre的时候说明出现了拐点。在从heap中删除元素时要注意,我使用priority_queue来实现,priority_queue并不提供删除的操作,所以又用了别外一个unordered_map来标记要删除的元素。在从heap中pop的时候先看有没有被标记过,如果标记过,就一直pop直到空或都找到没被标记过的值。别外在排序的时候要注意,如果两个节点的x坐标相同,我们就要考虑节点的其它属性来排序以避免出现冗余的答案。且体的规则就是如果都是左节点,就按y坐标从大到小排,如果都是右节点,按y坐标从小到大排,一个左节点一个右节点,就让左节点在前。下面是AC的代码。

 class Solution {
private:
enum NODE_TYPE {LEFT, RIGHT};
struct node {
int x, y;
NODE_TYPE type;
node(int _x, int _y, NODE_TYPE _type) : x(_x), y(_y), type(_type) {}
}; public:
vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {
vector<node> height;
for (auto &b : buildings) {
height.push_back(node(b[], b[], LEFT));
height.push_back(node(b[], b[], RIGHT));
}
sort(height.begin(), height.end(), [](const node &a, const node &b) {
if (a.x != b.x) return a.x < b.x;
else if (a.type == LEFT && b.type == LEFT) return a.y > b.y;
else if (a.type == RIGHT && b.type == RIGHT) return a.y < b.y;
else return a.type == LEFT;
}); priority_queue<int> heap;
unordered_map<int, int> mp;
heap.push();
vector<pair<int, int>> res;
int pre = 0, cur = ;
for (auto &h : height) {
if (h.type == LEFT) {
heap.push(h.y);
} else {
++mp[h.y];
while (!heap.empty() && mp[heap.top()] > ) {
--mp[heap.top()];
heap.pop();
}
}
cur = heap.top();
if (cur != pre) {
res.push_back({h.x, cur});
pre = cur;
}
}
return res;
}
};

使用一些技巧可以大大减少编码的复杂度,priority_queue并没有提供erase操作,但是multiset提供了,而且multiset内的数据是按BST排好序的。在区分左右节点时,我之前自己建了一个结构体,用一个属性type来标记。这里可以用一个小技巧,那就是把左边节点的高度值设成负数,右边节点的高度值是正数,这样我们就不用额外的属性,直接用pair<int, int>就可以保存了。而且对其排序,发现pair默认的排序规则就已经满足要求了。

 class Solution {
public:
vector<pair<int, int>> getSkyline(vector<vector<int>>& buildings) {
vector<pair<int, int>> height;
for (auto &b : buildings) {
height.push_back({b[], -b[]});
height.push_back({b[], b[]});
}
sort(height.begin(), height.end());
multiset<int> heap;
heap.insert();
vector<pair<int, int>> res;
int pre = , cur = ;
for (auto &h : height) {
if (h.second < ) {
heap.insert(-h.second);
} else {
heap.erase(heap.find(h.second));
}
cur = *heap.rbegin();
if (cur != pre) {
res.push_back({h.first, cur});
pre = cur;
}
}
return res;
}
};

LintCode上也有一道跟这道一样,不过只是输出的结果不同。

http://www.lintcode.com/en/problem/building-outline/

[LeetCode] The Skyline Problem的更多相关文章

  1. [LeetCode] The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  2. [LeetCode] 281. The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  3. [LeetCode] 218. The Skyline Problem 天际线问题

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  4. [LeetCode#218] The Skyline Problem

    Problem: A city's skyline is the outer contour of the silhouette formed by all the buildings in that ...

  5. Java for LeetCode 218 The Skyline Problem【HARD】

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

  6. LeetCode 218. The Skyline Problem 天际线问题(C++/Java)

    题目: A city's skyline is the outer contour of the silhouette formed by all the buildings in that city ...

  7. The Skyline Problem leetcode 详解

    class Solution { public: vector<pair<int, int>> getSkyline(vector<vector<int>&g ...

  8. 218. The Skyline Problem (LeetCode)

    天际线问题,参考自: 百草园 天际线为当前线段的最高高度,所以用最大堆处理,当遍历到线段右端点时需要删除该线段的高度,priority_queue不提供删除的操作,要用unordered_map来标记 ...

  9. The Skyline Problem

    A city's skyline is the outer contour of the silhouette formed by all the buildings in that city whe ...

随机推荐

  1. AMD and CMD are dead之KMD.js版本0.0.2发布

    更新 正式从UglifyJS切换至UglifyJS2 增加依赖可视化功能 压缩代码更加方便 统一风格:如main的class名也不能省略 优化了kmdjs管道 修复了无数bug 通过src开启debu ...

  2. HTML DOM 教程

    HTML DOM DOM 教程 DOM 简介 DOM 节点 DOM 方法 DOM 属性 DOM 访问 DOM 修改 DOM 内容 DOM 元素 DOM 事件 DOM 导航 一,HTML DOM 简介 ...

  3. Java基础知识点复习知识点(一)变量,流程控制,数组

  4. MyEclipse 2016 CI 3发布

    JSjet 语法高亮 受够了Eclipse中的JavaScript编码体验?那就来试试MyEclipse 2016 CI 3.JSjet改进了JavaScript编码的语法高亮功能,大大提升了代码的可 ...

  5. 友盟(Swift)-集成、统计用户数量、具体页面访问数量、具体按钮点击数量

    什么是友盟.有什么用? 这些傻瓜问题这里就不解释了,可以自己百度去. 友盟提供的文档和demo都是oc的,这里用swift写了一个小demo,在此分享一下. 步骤1:友盟后台注册应用(iOS),拿到a ...

  6. ThinkPHP实现对数据库的增删改查

    好久都没有更新博客了,之前老师布置的任务总算是现在可以说告一段落了,今天趁老师还没提出其他要求来更新一篇博客. 今天我想记录的是我之前做项目,自己所理解的ThinkPHP对数据库的增删改查. 首先要说 ...

  7. MongoDB学习笔记~管道中的分组实现group+distinct

    回到目录 mongoDB的管道是个好东西,它可以将很多操作批处理实现,即将多个命令放入一个管道,然后去顺序的执行它们,今天我要说的是,利用管道中的分组来实现实现中的ditinct+group的效果,即 ...

  8. Centos7中所有的关机命令的奇怪现象

    今天在研究shutdown,reboot,halt,poweroff几种关机命令的区别是发现他们都是/bin/systemctl的软连接 ls -l /sbin/{shutdown,reboot,ha ...

  9. getSupportFragmentManager要用在FragmentActivity及其子类中

    getSupportFragmentManager要用在FragmentActivity及其子类中!! 关于安卓抽屉导航!! * 自定义侧边栏

  10. linux下的守护进程daemon

    什么是守护进程?其实感觉守护进程并没有什么明确的定义,只是守护进程有一些特征,这是它需要遵循的. 守护进程的第一个特征是长时间在后台运行的程序,并且主要是为了提供某种服务,而为了能够让服务尽可能随时都 ...