深度学习-LSTM
前言
神经网络的历史和背景
神经网络是一种模拟人类神经系统的计算模型,它由大量简单的神经元单元组成,通过它们之间的连接和传递信息来模拟人脑的学习和推理过程。神经网络起源于上世纪40年代,当时Warren McCulloch和Walter Pitts提出了一种可模拟生物神经元的数学模型,这是第一个神经元模型。
20世纪50年代,Frank Rosenblatt发明了一种称为感知机(Perceptron)的神经网络,可以用来解决二元分类问题。然而,感知机存在一个明显的缺陷:它只能处理线性可分的问题。
在20世纪60年代和70年代,神经网络的发展陷入了低谷。但是,到了1980年代,由于电脑的迅速发展,计算能力大幅提升,使得神经网络的训练和优化变得更加可行。此时,很多新的算法被发明出来,包括误差反向传播算法、径向基函数神经网络、自组织神经网络等。
到了21世纪,深度学习逐渐崭露头角,深度神经网络成为了研究热点。深度神经网络拥有更多的隐含层,可以学习到更加复杂的特征和抽象概念,这种能力使得它在很多领域都取得了很好的表现。神经网络也成为了当今人工智能领域中的一种重要技术,应用广泛,包括语音识别、自然语言处理、图像识别、推荐系统等领域。
循环神经网络的出现及其作用
循环神经网络(Recurrent Neural Networks,简称RNN)是一种用于处理序列数据的神经网络,它可以接受任意长度的输入序列,并通过内部的循环连接来处理序列中的每个元素。RNN的出现是为了解决传统神经网络无法处理时序数据的问题,因为传统神经网络的输入和输出都是独立的,无法考虑上下文信息。
循环神经网络的基本思想是在网络中引入循环结构,使得网络可以保存之前的信息,并将其传递到下一步的计算中。通过这种方式,RNN可以处理具有时序性质的数据,例如语音、文本和视频等序列数据。RNN的一个重要特点是它可以处理变长的输入序列,这使得它在处理自然语言处理、语音识别、机器翻译等领域中非常有用。
RNN的应用非常广泛,其中最有代表性的是自然语言处理领域,例如情感分析、文本分类、语言模型、机器翻译等任务。另外,RNN也被广泛应用于语音识别、股票预测、动作识别等领域。除了基本的RNN,还有很多基于RNN的变体,例如长短时记忆网络(LSTM)和门控循环单元(GRU),它们都是为了解决RNN在长序列数据中存在的梯度消失和梯度爆炸的问题。
LSTM在处理序列数据中的应用
长短时记忆网络(Long Short-Term Memory,简称LSTM)是一种循环神经网络的变体,它可以解决传统RNN在处理长序列数据中存在的梯度消失和梯度爆炸问题,因此在处理序列数据中非常有效。
LSTM的基本单元是一个门控循环单元(Gated Recurrent Unit,简称GRU),由输入门、遗忘门和输出门组成。输入门控制着新输入的重要性,遗忘门控制着上一个时刻的记忆细胞状态的重要性,输出门控制着当前时刻的输出。这些门的作用是控制信息流的传递,从而实现长期依赖关系的建立。
LSTM在处理序列数据中的应用非常广泛,其中最为重要的是语言建模和机器翻译。在语言建模任务中,LSTM可以通过前面的词汇预测下一个词汇出现的概率分布。在机器翻译任务中,LSTM可以将源语言句子编码为一个固定长度的向量,然后再将其解码成目标语言的句子。此外,LSTM还可以应用于图像标注、视频分析、音频识别和时间序列预测等任务中。
总之,LSTM在处理序列数据中的应用非常广泛,它的门控机制可以有效地捕捉序列之间的长期依赖关系,因此在处理具有时序性质的数据时表现出了很好的效果。
LSTM的基本原理
LSTM的结构和原理
长短时记忆网络(Long Short-Term Memory,简称LSTM)是一种循环神经网络的变体,它可以解决传统RNN在处理长序列数据中存在的梯度消失和梯度爆炸问题,因此在处理序列数据中非常有效。
LSTM的基本结构是一个由记忆细胞和门控单元组成的网络,其中门控单元控制着信息流的传递,记忆细胞则负责存储和更新上下文信息。LSTM的一个重要特点是它的门控机制,包括输入门、遗忘门和输出门,这些门的作用是控制信息流的传递,从而实现长期依赖关系的建立。具体来说,输入门控制着新输入的重要性,遗忘门控制着上一个时刻的记忆细胞状态的重要性,输出门控制着当前时刻的输出。
在LSTM中,每个时刻的输入数据和上一个时刻的记忆细胞状态通过门控单元进行处理,计算出当前时刻的记忆细胞状态和输出。LSTM的计算过程可以分为三个部分:
- 遗忘门控制着记忆细胞的更新,它决定了哪些信息需要从记忆细胞中遗忘掉。遗忘门的输入是当前时刻的输入和上一个时刻的隐藏状态,输出是一个介于0和1之间的数值,表示要保留的信息量。
- 输入门控制着新信息的输入,它决定了哪些信息需要添加到记忆细胞中。输入门的输入是当前时刻的输入和上一个时刻的隐藏状态,输出是一个介于0和1之间的数值,表示要添加的信息量。
- 输出门控制着输出的生成,它决定了从记忆细胞中输出多少信息。输出门的输入是当前时刻的输入和上一个时刻的隐藏状态以及当前时刻的记忆细胞状态,输出是一个介于0和1之间的数值,表示要输出的信息量。
LSTM的门控机制使得网络能够有效地捕捉序列之间的长期依赖关系,并且能够在处理长序列数据时避免梯度消失和梯度爆炸的问题。因此,LSTM在处理语音识别、自然语言处理、视频分析和时间序列预测等领域中广泛应用。
遗忘门、输入门、输出门的作用
- 遗忘门(Forget Gate):控制着哪些信息需要从记忆细胞中遗忘掉。遗忘门的输入是当前时刻的输入和上一个时刻的隐藏状态,输出是一个介于0和1之间的数值,表示要保留的信息量。如果输出值为0,则表示需要完全遗忘上一个时刻的记忆细胞状态;如果输出值为1,则表示完全保留上一个时刻的记忆细胞状态。
- 输入门(Input Gate):控制着新信息的输入,决定了哪些信息需要添加到记忆细胞中。输入门的输入是当前时刻的输入和上一个时刻的隐藏状态,输出是一个介于0和1之间的数值,表示要添加的信息量。如果输出值为0,则表示不添加任何新信息;如果输出值为1,则表示完全添加新的信息。
- 输出门(Output Gate):控制着输出的生成,决定了从记忆细胞中输出多少信息。输出门的输入是当前时刻的输入和上一个时刻的隐藏状态以及当前时刻的记忆细胞状态,输出是一个介于0和1之间的数值,表示要输出的信息量。如果输出值为0,则表示不输出任何信息;如果输出值为1,则表示完全输出当前时刻的记忆细胞状态。
LSTM的训练方法
- 前向传播(Forward Propagation):将输入序列经过LSTM的各个门控单元,计算得到输出值。
- 计算损失函数(Compute Loss):将LSTM的输出值和实际标签值进行比较,计算损失函数,通常使用交叉熵损失函数。
- 反向传播(Backward Propagation):根据损失函数对LSTM的参数进行求导,计算出每个参数对损失函数的影响程度,并通过链式法则将梯度传递回每个门控单元。
- 参数更新(Update Parameters):根据梯度下降法,按照一定步长调整每个参数的取值,使得损失函数最小化。
重复以上步骤,直到达到最小化损失函数的目标。在实际应用中,通常会采用一些优化算法,如随机梯度下降(SGD)、Adagrad、Adam等,来加速参数更新的过程,并提高模型的收敛速度和准确度。
需要注意的是,在LSTM的训练过程中,由于存在大量的门控单元和非线性激活函数,会产生梯度消失和梯度爆炸等问题,这会导致训练效果不佳。为了解决这些问题,常用的方法包括裁剪梯度、梯度加权平均、残差连接等。
代码
使用Python和Keras深度学习库:
from keras.models import Sequential
from keras.layers import LSTM, Dense
# 定义LSTM模型
model = Sequential()
model.add(LSTM(64, input_shape=(timesteps, features)))
model.add(Dense(num_classes, activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=10, batch_size=32)
这里的LSTM层有64个神经元,输入形状是(timesteps, features)
,其中timesteps
是时间步长,features
是每个时间步的特征数。输出层使用softmax激活函数,损失函数为分类交叉熵,优化器为Adam,评估指标为准确率。模型在训练数据上进行了10个epoch的训练,每个batch的大小为32。请注意,这只是一个简单的示例,您可以根据自己的需求和数据集对模型进行更改和调整。
使用PyTorch实现的LSTM模型:
import torch
import torch.nn as nn
# 定义LSTM模型
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
# 初始化LSTM隐状态
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
# 前向传播LSTM
out, _ = self.lstm(x, (h0, c0))
# 提取最后一个时间步的输出
out = out[:, -1, :]
# 全连接层
out = self.fc(out)
return out
# 创建LSTM模型实例
model = LSTMModel(input_size=features, hidden_size=64, num_layers=1, num_classes=num_classes)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
for i, (inputs, labels) in enumerate(train_loader):
# 前向传播
outputs = model(inputs)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 每隔100个batch输出一次loss
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
# 在测试集上评估模型
with torch.no_grad():
correct = 0
total = 0
for inputs, labels in test_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the test images: {} %'.format(100 * correct / total))
这里的LSTM模型与之前的Keras实现类似,但是采用了PyTorch的nn.Module
基类和nn.LSTM
模块来定义模型。模型的训练和测试过程也与Keras实现类似,包括定义损失函数、优化器、训练循环和测试循环等。不同之处在于,PyTorch的训练过程需要手动定义反向传播和优化步骤。
LSTM的改进
GRU
GRU(Gated Recurrent Unit):GRU是一种与LSTM类似的门控循环单元,但它只有两个门(更新门和重置门),相比LSTM参数更少,计算也更简单,因此在某些场景下速度更快。
Attention机制
计划注意力LSTM(Scheduled Attentive LSTM)是一种具有注意力机制的LSTM模型,它可以在每个时刻动态地选择输入序列中的不同部分进行计算,从而提高了建模效果。此外,计划注意力LSTM还可以根据任务要求进行不同程度的注意力控制,使得模型更加灵活。
双向LSTM
双向LSTM:双向LSTM(Bidirectional LSTM)将输入序列分别从前向后和从后向前进行计算,得到两个隐状态序列,然后将它们连接起来得到最终的输出序列。这种方法可以有效地捕捉序列中的上下文信息,提高了序列建模的精度。
总结
LSTM的优势和局限性
- 能够有效地解决长期依赖问题:在传统的RNN中,由于梯度消失和梯度爆炸等原因,无法有效地处理长序列,而LSTM通过门控机制和记忆单元的设计,能够有效地保留长期记忆,从而解决了长期依赖问题。
- 能够处理变长序列:LSTM模型能够处理变长的序列数据,例如自然语言处理中的不定长文本,图像处理中的不定数量的特征点等。
- 具有较好的鲁棒性:LSTM模型能够处理输入数据中的噪声和缺失值,从而在一定程度上提高了模型的鲁棒性。
- 可以在多个任务中应用:由于LSTM具有强大的序列建模能力,它可以在多个任务中得到应用,例如自然语言处理、语音识别、图像处理等领域。
然而,LSTM也存在一些局限性:
- 训练过程较慢:LSTM模型通常需要较长的时间进行训练,尤其是在处理大规模数据时,训练时间可能会非常长。
- 容易过拟合:LSTM模型具有大量的参数,当训练数据不足或者噪声较大时,容易发生过拟合现象。
- 难以调参:由于LSTM模型的复杂性,需要调整的超参数较多,这可能会增加模型的复杂性和训练时间。
- 不易解释:LSTM模型中存在大量的隐藏状态和门控单元,因此对于模型的解释和可解释性方面存在一定的困难。
深度学习-LSTM的更多相关文章
- 用深度学习LSTM炒股:对冲基金案例分析
英伟达昨天一边发布“全球最大的GPU”,一边经历股价跳水20多美元,到今天发稿时间也没恢复过来.无数同学在后台问文摘菌,要不要抄一波底嘞? 今天用深度学习的序列模型预测股价已经取得了不错的效果,尤其是 ...
- 深度学习-LSTM与GRU
http://www.sohu.com/a/259957763_610300此篇文章绕开了数学公式,对LSTM与GRU采用图文并茂的方式进行说明,尤其是里面的动图,让人一目了然.https://zyb ...
- [深度学习]理解RNN, GRU, LSTM 网络
Recurrent Neural Networks(RNN) 人类并不是每时每刻都从一片空白的大脑开始他们的思考.在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义 ...
- 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别
深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...
- 深度学习:浅谈RNN、LSTM+Kreas实现与应用
主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N.N对1的结构,什么是LSTM,以及LSTM中的三门(input.ouput.forget),后续将利用深度学习框 ...
- TensorFlow (RNN)深度学习 双向LSTM(BiLSTM)+CRF 实现 sequence labeling 序列标注问题 源码下载
http://blog.csdn.net/scotfield_msn/article/details/60339415 在TensorFlow (RNN)深度学习下 双向LSTM(BiLSTM)+CR ...
- 时间序列深度学习:状态 LSTM 模型预測太阳黑子(一)
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/kMD8d5R/article/details/82111558 作者:徐瑞龙,量化分析师,R语言中文 ...
- 时间序列深度学习:状态 LSTM 模型预测太阳黑子
目录 时间序列深度学习:状态 LSTM 模型预测太阳黑子 教程概览 商业应用 长短期记忆(LSTM)模型 太阳黑子数据集 构建 LSTM 模型预测太阳黑子 1 若干相关包 2 数据 3 探索性数据分析 ...
- (转)零基础入门深度学习(6) - 长短时记忆网络(LSTM)
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就o ...
- 深度学习的seq2seq模型——本质是LSTM,训练过程是使得所有样本的p(y1,...,yT‘|x1,...,xT)概率之和最大
from:https://baijiahao.baidu.com/s?id=1584177164196579663&wfr=spider&for=pc seq2seq模型是以编码(En ...
随机推荐
- 解决win7连接蓝牙耳机播放设备找不到的问题
前言 这个问题其实就是蓝牙驱动问题, 而用第三方软件安装驱动,如驱动精灵安装蓝牙驱动,可能会不出现缺失驱动问题,但是一些功能会受到限制(win7系统与其蓝牙驱动不兼容). 解决办法 去 Inter官网 ...
- 如何禁止win7自动锁屏
前言 我是真的服了,就解决这个问题百度查了一大堆(浪费很长时间),都说是电源管理的问题,也不知道是谁抄谁的,改完还会自动锁屏. 然后我google一下子就解决了(这里有一个搜索技巧,就是将你的问题翻译 ...
- python调用程序路径中包空格,及包含特殊字符问题
解决办法 import os s = r'"C:\Program Files\Google\Chrome\Application\chrome.exe"' print(s) os. ...
- Oracle plsql Database links
在多系统对接的过程中,子系统要用到的基础数据例如部门和用户名是要和门户OA系统保持一致的,这个哦每天都要更新同步一次, 在Oracle中,存储过程可以完美的简单的解决这一问题.把目标数据库在plsql ...
- WeakHashMap 和 HashMap 的区别是什么,何时使用?
本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 前言 大家好,我是小彭. 在之前的文章里,我们聊到了 Java 标准库中 HashMap 与 LinkedH ...
- Blazor和Vue对比学习(进阶.路由导航一):基本使用
Blazor和Vue都是单文件组件SPA,路由的实现逻辑非常相似,页面路径的改变都是组件的切换,但因为各自语言的特性,在实现方式上有较大差异. 一.安装 1.Vue:Router是Vue的一个插件.如 ...
- 【大数据面试】Flink 01 概述:包含内容、层次架构、运行组件、部署模式、任务提交流程、任务调度概念、编程模型组成
一.概述 1.介绍 对无界和有界数据流进行有状态计算的分布式引擎和框架,并可以使用高层API编写分布式任务,主要包括: DataSet API(批处理):静态数据抽象为分布式数据集,方便使用操作符进行 ...
- 踩坑记录:Redis的lettuce连接池不生效
踩坑记录:Redis的lettuce连接池不生效 一.lettuce客户端 lettuce客户端 Lettuce 和 Jedis 的都是连接Redis Server的客户端程序.Jedis在实现上是直 ...
- ast在爬虫上的应用
https://astexplorer.net/ https://zhuanlan.zhihu.com/p/371710865 1.基础了解 const {parse} =require(" ...
- 安装aio-pika报错
报错内容: WARNING: You are using pip version 21.1.2; however, version 21.3.1 is available. You should co ...