1_info.py

# encoding: utf-8
import pandas as pd # 租房 基本信息
# 读取文件 df=dataframe
df = pd.read_json("zufang.json")
# print(df)
# print(df.columns) # 使用pandas的describe方法,打印基本信息
print(df.describe())
# 按照区,分别统计个数
print(df["district"].value_counts())
# print('**************************')
# # 二手房 基本信息
df = pd.read_json("ershoufang.json")
print(df.describe())
# 分别统计个数
print(df["district"].value_counts())

2_pie_chart.py

# coding:utf-8
import numpy as np
import pandas as pd
import json
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei'] myfont = FontProperties(
fname='/Users/seancheney/.matplotlib/mpl-data/fonts/ttf/SimHei.ttf') labels = '朝阳', '海淀', '昌平', '东城', '大兴', '西城', '丰台', '石景山', '通州', '顺义' df_zf = pd.read_json("ershoufang.json")
chaoyang_count = df_zf['district'].value_counts()['朝阳']
haidian_count = df_zf['district'].value_counts()['海淀']
changping_count = df_zf['district'].value_counts()['昌平']
dongcheng_count = df_zf['district'].value_counts()['东城']
daxing_count = df_zf['district'].value_counts()['大兴']
xicheng_count = df_zf['district'].value_counts()['西城']
fengtai_count = df_zf['district'].value_counts()['丰台']
shijingshan_count = df_zf['district'].value_counts()['石景山']
tongzhou_count = df_zf['district'].value_counts()['通州']
shunyi_count = df_zf['district'].value_counts()['顺义'] sizes = [
chaoyang_count,
haidian_count,
changping_count,
dongcheng_count,
daxing_count,
xicheng_count,
fengtai_count,
shijingshan_count,
tongzhou_count,
shunyi_count]
explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
plt.subplot(121)
plt.pie(
sizes,
explode=explode,
labels=labels,
autopct='%1.1f%%',
shadow=True,
startangle=-90)
plt.axis('equal')
plt.title("房屋出售分布", fontproperties=myfont) labels = '朝阳', '海淀', '昌平', '东城', '大兴', '西城', '丰台', '石景山', '通州', '顺义'
df_zf = pd.read_json("zufang.json")
chaoyang_count = df_zf['district'].value_counts()['朝阳']
haidian_count = df_zf['district'].value_counts()['海淀']
changping_count = df_zf['district'].value_counts()['昌平']
dongcheng_count = df_zf['district'].value_counts()['东城']
daxing_count = df_zf['district'].value_counts()['大兴']
xicheng_count = df_zf['district'].value_counts()['西城']
fengtai_count = df_zf['district'].value_counts()['丰台']
shijingshan_count = df_zf['district'].value_counts()['石景山']
tongzhou_count = df_zf['district'].value_counts()['通州'] labels = '朝阳', '海淀', '昌平', '东城', '大兴', '西城', '丰台', '石景山', '通州'
sizes = [
chaoyang_count,
haidian_count,
changping_count,
dongcheng_count,
daxing_count,
xicheng_count,
fengtai_count,
shijingshan_count,
tongzhou_count]
explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0)
plt.subplot(122)
plt.pie(
sizes,
explode=explode,
labels=labels,
autopct='%1.1f%%',
shadow=True,
startangle=-90)
plt.axis('equal')
plt.title("房屋出租分布", fontproperties=myfont)
plt.rc('font', family=['SimHei'])
plt.show()

3_hist.py

import numpy as np
import pandas as pd
import json
import matplotlib.pyplot as plt
from pylab import * mpl.rcParams['font.sans-serif'] = ['SimHei'] df = pd.read_json("ershoufang.json") print(df.columns) unitprice_values = df.unitprice
plt.hist(unitprice_values,bins=25)
plt.xlim(0, 200000)
plt.title(u"房屋出售每平米价格分布")
plt.xlabel(u'价格(单位:万/平方米)')
plt.ylabel(u'套数')
plt.show()

4_ratio.py

# 售租比
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei'] district = ('西城', '石景山', '东城', '海淀', '丰台', '昌平', '大兴', '朝阳', '通州') # 读取租房数据
df_zf = pd.read_json("zufang.json")
unitprice_zf = df_zf['price'] / df_zf['area']
df_zf['unitprice'] = unitprice_zf # print(df_zf) month_price = df_zf.groupby(by=['district']).sum(
)['unitprice'] / df_zf["district"].value_counts() # print(month_price) # # 读取二手房数据
df_esf = pd.read_json("ershoufang.json") sell_price = df_esf.groupby(by=['district']).sum(
)['unitprice'] / df_esf["district"].value_counts() # print(sell_price) xicheng_ratio = sell_price['西城'] / month_price['西城']
shijingshan_ratio = sell_price['石景山'] / month_price['石景山']
dongcheng_ratio = sell_price['东城'] / month_price['东城']
haidian_ratio = sell_price['海淀'] / month_price['海淀']
fengtai_ratio = sell_price['丰台'] / month_price['丰台']
changping_ratio = sell_price['昌平'] / month_price['昌平']
daxing_ratio = sell_price['大兴'] / month_price['大兴']
chaoyang_ratio = sell_price['朝阳'] / month_price['朝阳']
tongzhou_ratio = sell_price['通州'] / month_price['通州']
#
#
ratio = (
xicheng_ratio,
shijingshan_ratio,
dongcheng_ratio,
haidian_ratio,
fengtai_ratio,
changping_ratio,
daxing_ratio,
chaoyang_ratio,
tongzhou_ratio
) fig, ax = plt.subplots() y_pos = np.arange(len(district))
# performance = ratio ax.barh(y_pos, ratio, align='center', color='green', ecolor='black')
ax.set_yticks(y_pos)
ax.set_yticklabels(district)
# ax.invert_yaxis()
ax.set_xlabel('售租比(单位:月)')
ax.set_title('各区房屋售租比') plt.show()

18.scrapy_maitian_analysis的更多相关文章

  1. CSharpGL(18)分别处理glDrawArrays()和glDrawElements()两种方式下的拾取(ColorCodedPicking)

    CSharpGL(18)分别处理glDrawArrays()和glDrawElements()两种方式下的拾取(ColorCodedPicking) 我在(Modern OpenGL用Shader拾取 ...

  2. ABP(现代ASP.NET样板开发框架)系列之18、ABP应用层——权限验证

    点这里进入ABP系列文章总目录 ABP(现代ASP.NET样板开发框架)系列之18.ABP应用层——权限验证 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目 ...

  3. ASP.NET MVC5+EF6+EasyUI 后台管理系统(18)-权限管理系统-表数据

    系列目录 这一节,我们插入数据来看看数据流,让各位同学,知道这个权限表交互是怎么一个流程,免得大家后天雾里来雾里去首先我再解释一些表,SysUser和SysRole表不用解释了. SysRoleSys ...

  4. C#开发微信门户及应用(18)-微信企业号的通讯录管理开发之成员管理

    在上篇随笔<C#开发微信门户及应用(17)-微信企业号的通讯录管理开发之部门管理>介绍了通讯录的部门的相关操作管理,通讯录管理包括部门管理.成员管理.标签管理三个部分,本篇主要介绍成员的管 ...

  5. [MySQL Reference Manual] 18 复制

    18 复制 18 复制 18.1 复制配置 18.1.1 基于Binary Log的数据库复制配置 18.1.2 配置基于Binary log的复制 18.1.2.1 设置复制master的配置 18 ...

  6. Hihocoder 太阁最新面经算法竞赛18

    Hihocoder 太阁最新面经算法竞赛18 source: https://hihocoder.com/contest/hihointerview27/problems 题目1 : Big Plus ...

  7. grep-2.26 sed-4.2.2 awk-4.1.4 wget-1.18 pcregrep-8.39 pcre2grep-10.22 for windows 最新版本静态编译

    -------------------------------------------------------------------------------------------- grep (G ...

  8. 《C#本质论》读书笔记(18)多线程处理

    .NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...

  9. Java随机生成18位身份证号

    package com.ihome.data; import java.text.SimpleDateFormat; import java.util.Calendar; import java.ut ...

随机推荐

  1. VS 2019企业版激活码

    Visual Studio 2019 EnterpriseBF8Y8-GN2QH-T84XB-QVY3B-RC4DF

  2. Struts2入门的第一个应用

    今天开始学习struts2技术,现在struts2的技术已经超过了struts1,所以本人就没有学习struts1了,当然这个肯定不会影响我们后面的学习,先来看一下工程的目录结构: 说明: query ...

  3. HAProxy服务器 、Keepalived热备 、Keepalived+LVS

    配置HAProxy负载平衡集群 1.1 问题 准备三台Linux服务器,两台做Web服务器,一台安装HAProxy,实现如下功能: 客户端访问HAProxy,HAProxy分发请求到后端Real Se ...

  4. flume配置参数的意义

    1.监控端口数据: flume启动: [bingo@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file jo ...

  5. NX二次开发-UFUN获取相邻面UF_MODL_ask_adjac_faces

    NX9+VS2012 #include <uf.h> #include <uf_obj.h> #include <uf_modl.h> UF_initialize( ...

  6. C++之运算符重载(一元)

    一.-符号重载 1.成员函数重载负号 2.友元函数重载负号 3.补充说明 <1> <一元运算符编码实现(一)>课程笔记: A:事实上,我们的重载运算符返回void.返回对象本身 ...

  7. java执行顺序之深入理解clinit和init

    原文地址:https://blog.csdn.net/qq_36522306/article/details/80582758 前言: 最近研究了深入理解JVM这本书中的知识,对java中各部分执行的 ...

  8. 关于strtok函数

    函数原型: char *strtok(char * strToken, const char *strDelimit) 参数说明: strToken:源字符串,即待分割的串 strDelimit:st ...

  9. HduOJ 2162 - Primes

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2161 题意:判断n是不是素数,输入到0停止.题目规定1 2 都不是素数. 题解:筛素数.老题目.不过这 ...

  10. Jmeter压测快速体验

    前言 最近在看neo4j相关的官网文档以及一些调优参数,同时也学了下Jmeter,为了测试下neo4j服务的性能,虽然不是专业搞测试的,但是我觉得每个优秀的开发者都应该学会主动压测自己服务和代码的性能 ...