VAR模型学习笔记
1 定义
VAR模型除了分析自身滞后项的影响外,还分析其他相关因素的滞后项对未来值产生的影响参考
用来分析随机扰动对系统的动态冲击的大小,正负以及持续时间
VAR模型的具体步骤
- 1.先检验序列的平稳性,看序列是否平稳,或者一阶单整,或者更高阶;
- 2.根据AIC SBC等准则选择Var模型的滞后阶数;
- 3.看VAR模型根是否在单位圆内,在可继续后续分析;
- 4.若同阶单整,则进行协整检验,看变量之间有没有协整关系;
- 5.granger因果检验,看俩俩变量有没有相关关系,并不能证明有因果关系;
- 6.脉冲响应,看变量对外界冲击的反馈;
- 7.方差分解…
var主要目的不是回归系数,是为了方差分解和脉冲响应分析
参考VAR模型也叫向量自回归模型,简单的来说就是刻画向量之间的数量关系①能进行回归,前提是平稳数据,②回归发生在向量之间,那么向量之间要存在一定的关系,统计上的因果关系,因此就需要进行格兰杰因果关系检验,检验的前提也是平稳的时间序列③因此要最先进行平稳性检验。
总结一下就是: - 平稳性检验
- 格兰杰因果检验
进行VAR
1.1 平稳性检验
- 通过单位根检验是平稳数据,则继续进行格兰杰因果检验
不是平稳数据,则要进行平稳化处理,取对数或者差分
1.2 格兰杰检验
进行格兰杰因果检验的时候要判定滞后阶数
1.3 VAR模型的公式
\[
y_{t}=\beta_{1} \cdot y_{t-1}+\alpha_{1} \cdot x_{t-1}+\beta_{2} \cdot y_{t-2}+\alpha_{2} \cdot x_{t-2}+\ldots
\]
或者下面这个矩阵定义式是一样的
第一一个P阶VAR模型VAR(P)
\[
Y_{t}=\sum_{i=1}^{p} \Pi_{i} Y_{t-i}+U_{t}=\Pi_{1} Y_{t-1}+\Pi_{2} Y_{t-2}+\quad+\Pi_{p} Y_{t-p}+U_{t}
\]
\(Y_t=(y_1t,y_2t...y_Nt)\)是N1阶时间序列变量,\(\Pi_{i}(i=1,2, \quad, p)\)是第i个待估参数的的NN矩阵,\(U_{t}=\left(u_{1 t} \mathbf{u}_{2 t} \quad\mathbf{u}_{N t}\right)^{T}\)是N*1阶随机误差向量列。p是模型的滞后阶数。
VAR模型是由单变量的AR模型推广到多变量的组成的向量自回归模型的1.4 建立VAR模型的目的
- 预测,可以用于长期预测
脉冲响应分析和方差分解,用于变量间动态结构的分析
reference
后面补充公式模型
还有python代码
建模步骤及公式
代码实现
利用Python中的numpy和pandas包做时间序列,我是第一次做
VAR模型学习笔记的更多相关文章
- 概率图模型学习笔记:HMM、MEMM、CRF
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...
- NIO模型学习笔记
NIO模型学习笔记 简介 Non-blocking I/O 或New I/O 自JDK1.4开始使用 应用场景:高并发网络服务器支持 概念理解 模型:对事物共性的抽象 编程模型:对编程共性的抽象 BI ...
- Pytorch线性规划模型 学习笔记(一)
Pytorch线性规划模型 学习笔记(一) Pytorch视频学习资料参考:<PyTorch深度学习实践>完结合集 Pytorch搭建神经网络的四大部分 1. 准备数据 Prepare d ...
- LDA主题模型学习笔记5:C源代码理解
1.说明 本文对LDA原始论文的作者所提供的C代码中LDA的主要逻辑部分做凝视,原代码可在这里下载到:https://github.com/Blei-Lab/lda-c 这份代码实现论文<Lat ...
- HMM模型学习笔记(前向算法实例)
HMM算法想必大家已经听说了好多次了,完全看公式一头雾水.但是HMM的基本理论其实很简单.因为HMM是马尔科夫链中的一种,只是它的状态不能直接被观察到,但是可以通过观察向量间接的反映出来,即每一个观察 ...
- 微软CodeDom模型学习笔记(全)
CodeDomProvider MSDN描述 CodeDomProvider可用于创建和检索代码生成器和代码编译器的实例.代码生成器可用于以特定的语言生成代码,而代码编译器可用于将代码编译为程序集. ...
- GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)
我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...
- LDA主题模型学习笔记3.5:变分參数推导
如今来推导一下得到变分參数更新式的过程.这一部分是在论文的附录中,为避免陷入过多细节而影响总体理解.能够在刚開始学习LDA的时候先不关注求解细节.首先要把L写成关于γ,ϕ\gamma,\phi函数.依 ...
- OSI七层模型学习笔记
1.简介 什么是OSI模型呢? OSI模型全名Open System InterConnect 即开放式系统互联,是国际标准化组织(ISO)提出的一个试图使各种计算机在世界范围内互连为网络的标准框架, ...
随机推荐
- SQL中的事务ACID
概述: 事务是由一系列语句构成的逻辑工作单元.事务和存储过程等批处理有一定程度上的相似之处, 通常都是为了完成一定业务逻辑而将一条或者多条语句“封装”起来,使它们与其他语句之间出现一个逻辑上的边界,并 ...
- 第十周CTF解答
第十周write-up解题答案及过程 隐写诶 直接用WinRAR查看就能看到其flag{0ca175b9c0f726a831d895e269332461 } 第一题 将后缀名改为 rar ,发现压缩包 ...
- POJ - 1426-Find The Multiple-专为小白解惑-同余加搜索树
题意:给出一个整数n,(1 <= n <= 200).求出任意一个它的倍数m,要求m必须只由十进制的'0'或'1'组成,m不超过100位. 解题思路:首先大家应该会想到暴力枚举每一个m,但 ...
- 在阿里云服务器上安装mysql及重置密码
参考链接:https://www.cnblogs.com/ljysy/p/10324854.html 下载与安装MySQL: 这里采用Yum管理好了各种rpm包的依赖,能够从指定的服务器自动下载RPM ...
- NODEJS 搭建本地文件服务器
npm install anywhere --g 然后再任意目录位置运行 anywhere 80 就可以开启服务器.
- jQuery---jQuery插件
jQuery插件 使用插件的步骤 1. 引入jQuery文件 2. 引入插件(如果有用到css的话,需要引入css) 3. 使用插件 <!--1. 引入jquery的js文件--> < ...
- 安装JumpServer到CentOS(YUM)
运行环境 系统版本:CentOS Linux release 7.6.1810 (Core) 软件版本:JumpServer-1.4.8 硬件要求:最低2核4GB 官方文档:https://docs. ...
- linux下安装setuptools
wget https://pypi.python.org/packages/07/a0/11d3d76df54b9701c0f7bf23ea9b00c61c5e14eb7962bb29aed866a5 ...
- H5_0025:css3自适应布局单位vw,vh
视口单位(Viewport units) 什么是视口? 在桌面端,视口指的是在桌面端,指的是浏览器的可视区域:而在移动端,它涉及3个视口:Layout Viewport(布局视口),Visual Vi ...
- JavaSE学习笔记(4)---抽象类和接口
JavaSE学习笔记(4)---抽象类和接口 抽象方法和抽象类 ·抽象方法 使用abstract修饰的方法,没有方法体,只有声明.定义的是一种"规范",就是告诉子类必须要给抽象方法 ...