Description

  国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源
于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。而我们的主人公小Q,
正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定
将棋盘扩大以适应他们的新规则。小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种
颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。不过小Q还没有决定是找
一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他
希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。于是小Q找到了即将参加全
国信息学竞赛的你,你能帮助他么?

Input

  第一行包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形
纸片的颜色(0表示白色,1表示黑色)。

Output

  包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋
盘的面积(注意正方形和矩形是可以相交或者包含的)。

Sample Input

3 3
1 0 1
0 1 0
1 0 0

Sample Output

4
6

HINT

N, M ≤ 2000


 /**************************************************************
Problem: 1057
User: ZYBGMZL
Language: C++
Result: Accepted
Time:2676 ms
Memory:52328 kb
****************************************************************/ #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
#define dbg(x) cout<<#x<<" = "<<x<<endl const int maxn=; int n,m;
bool a[maxn][maxn];
int dP[maxn][maxn];
int Dp1[maxn][maxn],Dp2[maxn][maxn]; void DP1(){
int ans=;
for(int i=;i<n;i++)
for(int j=;j<m;j++)
if(a[i][j]==a[i-][j]&&a[i][j]==a[i-][j-]&&a[i][j]==a[i][j-]){
dP[i][j]=min(dP[i-][j],min(dP[i-][j-],dP[i][j-]))+;
ans=max(ans,dP[i][j]);
}
else
dP[i][j]=;
printf("%d\n",ans*ans);
} void DP2(){
int ans=;
for(int i=;i<n;i++)
for(int j=;j<m;j++)
Dp1[i][j]=Dp2[i][j]=;
for(int i=;i<n;i++)
for(int j=;j<m;j++)
if(a[i][j]==a[i-][j])
Dp1[i][j]=Dp1[i-][j]+;
for(int i=n-;i>=;i--)
for(int j=;j<m;j++)
if(a[i][j]==a[i+][j])
Dp2[i][j]=Dp2[i+][j]+;
for(int i=;i<n;i++){
int mx1=Dp1[i][],mx2=Dp2[i][],ml=;
for(int j=;j<m;j++){
ans=max(ans,(j-ml+)*(mx1+mx2-));
if(j==m-) break;
if(a[i][j]!=a[i][j+]){
ml=j+;
mx1=Dp1[i][j+];
mx2=Dp2[i][j+];
}
else{
mx1=min(mx1,Dp1[i][j+]);
mx2=min(mx2,Dp2[i][j+]);
}
}
}
printf("%d\n",ans);
} int main(){
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
for(int j=;j<m;j++){
scanf("%d",&a[i][j]);
a[i][j]^=(i^j)&;
}
DP1(); DP2();
return ;
}

bzoj1057: [ZJOI2007]棋盘制作 [dp][单调栈]的更多相关文章

  1. [luogu]P1169 [ZJOI2007]棋盘制作[DP][单调栈]

    [luogu]P1169 [ZJOI]棋盘制作 ——!x^n+y^n=z^n 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋 ...

  2. 【BZOJ1057】[ZJOI2007] 棋盘制作(单调栈的运用)

    点此看题面 大致题意: 给你一个\(N*M\)的\(01\)矩阵,要求你分别求出最大的\(01\)相间的正方形和矩形(矩形也可以是正方形),并输出其面积. 题解 这题第一眼看去没什么思路,仔细想想,能 ...

  3. 【BZOJ】1057: [ZJOI2007]棋盘制作(单调栈)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1057 同某一题差不多?记不清是哪题了.. 就是每一行进行单调栈维护递增的高度,在进栈和出栈维护一下长 ...

  4. Luogu 1169 [ZJOI2007]棋盘制作 - 动态规划+单调栈

    Description 给一个01矩阵, 求出最大的01交错的正方形和最大的01交错的矩阵 Solution 用动态规划求出最大的正方形, 用单调栈求出最大的矩阵. 在这里仅介绍求出最大正方形(求最大 ...

  5. [luoguP1169] [ZJOI2007]棋盘制作(单调栈)

    传送门 和玉蟾宫差不多 ——代码 #include <cstdio> #include <iostream> using namespace std; ; int n, m, ...

  6. luogu 1169 棋盘制作(单调栈/悬线)

    luogu 1169 棋盘制作(单调栈/悬线) 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应 ...

  7. BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)

    1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 1848  Solved: 936 [Submit][Sta ...

  8. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  9. BZOJ1057 [ZJOI2007]棋盘制作 【最大同色矩形】

    1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 3248  Solved: 1636 [Submit][St ...

随机推荐

  1. string::size_type 页73 size_t 页90

    异同点: size_t size_type sizeof(XXX)所得到的结果的类型就是 string类类型和vector类类型定义的类型,string的size操作返回来的是string::size ...

  2. jedate(日期插件)

    首先要引入JQuery,然后引入jedate.css和jedate.js(注:需要把下载好的jedate文件夹整个的放在项目中,不然图标无法显示) 没有把整个文件夹放进去的效果            ...

  3. ansible如何用root用户运行普通用户授权

    ansible默认以root用户进行授权,但是需要用普通用户执行一些命令操作: 如: 1. ansible 10.0.0.1 -m raw -a "date" -u www 但是会 ...

  4. CentOS下MYSQL数据库的安装

    关于在Centos系统下安装MYSQL数据库,网络上资料有很多,在此主要感谢该文章的博主:http://www.cnblogs.com/zhoulf/archive/2013/01/25/zhoulf ...

  5. python的代码块缓存机制,小数据池机制。

    同一代码块的缓存机制 在python中一个模块,一个函数,一个类,一个文件等都是一个代码块. 机制内容:Python在执行同一个代码块的初始化对象的命令时,会检查是否其值是否已经存在,如果存在,会将其 ...

  6. NX二次开发-Block UI C++界面Specify Point(指定点)控件的获取(持续补充)

    Specify Point(指定点)控件的获取 NX9+VS2012 #include <uf.h> #include <uf_ui.h> UF_initialize(); / ...

  7. (转)OpenFire源码学习之十:连接管理(上)

    转:http://blog.csdn.net/huwenfeng_2011/article/details/43415827 关于连接管理分为上下两部分 连接管理 在大并发环境下,连接资源 需要随着用 ...

  8. I/O复用select 使用简介

    一:五种I/O模型区分: 1.阻塞I/O模型      最流行的I/O模型是阻塞I/O模型,缺省情形下,所有套接口都是阻塞的.我们以数据报套接口为例来讲解此模型(我们使用UDP而不是TCP作为例子的原 ...

  9. java.lang.Object错误

    java.lang.Object错误 项目遇到一个错误 因为构建路径不完整..... 主要是因为缺少JDK(java.lang.Object来自那里),或者是JDK错误. 右击项目-->属性-- ...

  10. 前端(十四)—— JavaScript常用类:Number、Date类、字符串、数组、Math类、正则

    JS常用类:Number类.Date类.Math类.字符串.数组.正则 一.Number 1.常用数字 整数:10 小数:3.14 科学计数法:1e5 | 1e-5 正负无穷:Infinity | - ...