spark版本:1.6.0

scala版本:2.10

报错日志:

Application application_1562341921664_2123 failed 2 times due to AM Container for appattempt_1562341921664_2123_000002 exited with exitCode: -104
For more detailed output, check the application tracking page: http://winner-offline-namenode:8088/cluster/app/application_1562341921664_2123 Then click on links to logs of each attempt.
Diagnostics: Container [pid=8891,containerID=container_e12_1562341921664_2123_02_000001] is running beyond physical memory limits. Current usage: 3.0 GB of 3 GB physical memory used; 5.0 GB of 6.3 GB virtual memory used. Killing container.
Dump of the process-tree for container_e12_1562341921664_2123_02_000001 :
|- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE
|- 8891 8889 8891 8891 (bash) 0 0 112881664 367 /bin/bash -c LD_LIBRARY_PATH=/usr/hdp/current/hadoop-client/lib/native:/usr/hdp/current/hadoop-client/lib/native/Linux-amd64-64: /usr/java/jdk1.8.0_162/bin/java -server -Xmx2048m -Djava.io.tmpdir=/disk1/hadoop/yarn/local/usercache/hadoop/appcache/application_1562341921664_2123/container_e12_1562341921664_2123_02_000001/tmp '-XX:+PrintGCDetails' '-XX:+PrintGCTimeStamps' -Dhdp.version=2.6.4.0-91 -Dspark.yarn.app.container.log.dir=/disk1/hadoop/yarn/log/application_1562341921664_2123/container_e12_1562341921664_2123_02_000001 org.apache.spark.deploy.yarn.ApplicationMaster --class 'com.winner.wifi.WinWifiAPIncre' --jar file:/hadoop/datadir/guozy/jar/winnercloud-assembly.jar --arg '2019-07-02' --arg 'bg' --arg 'St_P00094#St_P00087#Xsj_00001P00016#Cqhm_P00091#Langold_00004P00001#Xcjt_00004P00010#Djzx_P00001#Xsj_00001P00035#Xsj_00001P00013#Whc_P00081#Sygc_00001P00001#Szc_P00017#Lyyysc_P00001#Longfor_00001P00013#Lgjt_P00040#Wfjjt_P00028#Qzkyss_00001P00001#Hfjt_P00002#Xxhjgjgc_P00001#Xsj_00001P00024#Wdl_P00103#Hualian_00008P00020#Xl_P00067#Bfc_P00114#Snjt_00001P00001#Lfjt_P00002#Xuhui_P00050#Bailian_00002P00051#Xinyuan_P00077#Wdl_P00105#Hualian_P00004#Wfjjt_P00095#Fxhyjt_00001P00001#Xsj_00001P00023#Xsj_00001P00020#Xhbh_P00089#Szc_P00001#Yxgw_00001P00001#Wfjjt_P00035#Mybh_P00001#Yhjt_00002P00001#Wdl_P00106#Nydtjt_00001P00001#Xsj_00001P00002#Xuhui_P00038#Xsj_00001P00017#Xsj_00001P00012#Xsj_00001P00027#Lfjt_P00001#Xsj_00001P00034#Xhbh_P00108#Wjjt_P00022#Hjgc_P00001#Zxtfgc_P00001#Xhzb_P00001#Txjt_P00001#Mybh_P00003#Hdjt_00002P00018#Bailian_00002P00026#Hrzd_00002P00001#Bailian_00002P00052#Hxmkl_P00007#Ayjt_P00002#Wdl_P00107#Bailian_00002P00004#Ayjt_00004P00013#Hxmkl_P00009#Xsj_00001P00006#Wfjjt_P00027' --arg '1' --arg '150' --executor-memory 2048m --executor-cores 1 --properties-file /disk1/hadoop/yarn/local/usercache/hadoop/appcache/application_1562341921664_2123/container_e12_1562341921664_2123_02_000001/__spark_conf__/__spark_conf__.properties 1> /disk1/hadoop/yarn/log/application_1562341921664_2123/container_e12_1562341921664_2123_02_000001/stdout 2> /disk1/hadoop/yarn/log/application_1562341921664_2123/container_e12_1562341921664_2123_02_000001/stderr
|- 8906 8891 8891 8891 (java) 51299 2993 5230977024 787116 /usr/java/jdk1.8.0_162/bin/java -server -Xmx2048m -Djava.io.tmpdir=/disk1/hadoop/yarn/local/usercache/hadoop/appcache/application_1562341921664_2123/container_e12_1562341921664_2123_02_000001/tmp -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -Dhdp.version=2.6.4.0-91 -Dspark.yarn.app.container.log.dir=/disk1/hadoop/yarn/log/application_1562341921664_2123/container_e12_1562341921664_2123_02_000001 org.apache.spark.deploy.yarn.ApplicationMaster --class com.winner.wifi.WinWifiAPIncre --jar file:/hadoop/datadir/guozy/jar/winnercloud-assembly.jar --arg 2019-07-02 --arg bg --arg St_P00094#St_P00087#Xsj_00001P00016#Cqhm_P00091#Langold_00004P00001#Xcjt_00004P00010#Djzx_P00001#Xsj_00001P00035#Xsj_00001P00013#Whc_P00081#Sygc_00001P00001#Szc_P00017#Lyyysc_P00001#Longfor_00001P00013#Lgjt_P00040#Wfjjt_P00028#Qzkyss_00001P00001#Hfjt_P00002#Xxhjgjgc_P00001#Xsj_00001P00024#Wdl_P00103#Hualian_00008P00020#Xl_P00067#Bfc_P00114#Snjt_00001P00001#Lfjt_P00002#Xuhui_P00050#Bailian_00002P00051#Xinyuan_P00077#Wdl_P00105#Hualian_P00004#Wfjjt_P00095#Fxhyjt_00001P00001#Xsj_00001P00023#Xsj_00001P00020#Xhbh_P00089#Szc_P00001#Yxgw_00001P00001#Wfjjt_P00035#Mybh_P00001#Yhjt_00002P00001#Wdl_P00106#Nydtjt_00001P00001#Xsj_00001P00002#Xuhui_P00038#Xsj_00001P00017#Xsj_00001P00012#Xsj_00001P00027#Lfjt_P00001#Xsj_00001P00034#Xhbh_P00108#Wjjt_P00022#Hjgc_P00001#Zxtfgc_P00001#Xhzb_P00001#Txjt_P00001#Mybh_P00003#Hdjt_00002P00018#Bailian_00002P00026#Hrzd_00002P00001#Bailian_00002P00052#Hxmkl_P00007#Ayjt_P00002#Wdl_P00107#Bailian_00002P00004#Ayjt_00004P00013#Hxmkl_P00009#Xsj_00001P00006#Wfjjt_P00027 --arg 1 --arg 150 --executor-memory 2048m --executor-cores 1 --properties-file /disk1/hadoop/yarn/local/usercache/hadoop/appcache/application_1562341921664_2123/container_e12_1562341921664_2123_02_000001/__spark_conf__/__spark_conf__.properties
Container killed on request. Exit code is 143
Container exited with a non-zero exit code 143.
Failing this attempt. Failing the application.

报错截图:

主要资源配置:

  --driver-memory 2g

--executore-memory 2g

临时解决方案:

增大driver端的内存

--driver-memory 3g

--executore-memory 2g

问题解决。

补充(根本原因):

之前一直从网上搜索了很多的问题解决方案,基本大多数都是让我们调整参数,比如,在尝试了各种参数的调整之后,还是没有效果,所以,就想应该是代码上出了问题,回去仔细查看了代码,找到了原因。

  1、代码中使用了for循环,并在在否循环中使用了大量的广播变量,而这些广播变量基本都是一些配置文件,完全是没有必要每次循环都要广播一遍,只需要广播一遍即可,因为,spark中,在对某个变量进行广播的时候,driver端会先将变量收到driver段之后,然后在进行往各个节点分发,这样每循环一次,driver端就会想变量收集一次,这样,随着循环次数的增多,driver段的内存越来越紧张,知道最后,导致driver段内存撑爆。

  2、虽然一开始的时候每次使用完广播变量之后,都调用了unpersist方法进行了释放广播变量,但是driver的gc实际上还是调用的系统的gc方式,即system.gc,而driver段的gc默认是没半个小时执行一次,所以即使我们调用了unpersist方法,也不是说马上就会进行垃圾变量清楚。

  3、其次就是,我在submit的时候修改了gc的算法,改为了G1回收算法,但是我觉得这个应该不是导致driver段内存爆满的原因。

  4、反思:遇到问题的时候还是思考的有点少,其实调整参数个人认为只能说是一些基本的辅助作用,根本原因还是在我们写的代码上面,争取将代码调整到最优之后,基本就没什么问题了。

spark运行任务报错:Container [...] is running beyond physical memory limits. Current usage: 3.0 GB of 3 GB physical memory used; 5.0 GB of 6.3 GB virtual memory used. Killing container.的更多相关文章

  1. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十三)kafka+spark streaming打包好的程序提交时提示虚拟内存不足(Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical memory used; 2.2 GB of 2.1 G)

    异常问题:Container is running beyond virtual memory limits. Current usage: 119.5 MB of 1 GB physical mem ...

  2. hadoop的job执行在yarn中内存分配调节————Container [pid=108284,containerID=container_e19_1533108188813_12125_01_000002] is running beyond virtual memory limits. Current usage: 653.1 MB of 2 GB physical memory used

    实际遇到的真实问题,解决方法: 1.调整虚拟内存率yarn.nodemanager.vmem-pmem-ratio (这个hadoop默认是2.1) 2.调整map与reduce的在AM中的大小大于y ...

  3. is running beyond physical memory limits. Current usage: 2.0 GB of 2 GB physical memory used; 2.6 GB of 40 GB virtual memory used

    昨天使用hadoop跑五一的数据,发现报错: Container [pid=,containerID=container_1453101066555_4130018_01_000067] GB phy ...

  4. 在ios7真机上和iOS6模拟器上运行是好的,而在iOS6真机上运行却报错

    在ios7真机上和iOS6模拟器上运行是好的,而在iOS6真机上运行却报错 解决方法: 或是都设置为yes.. Build Active Architecture Only的意思是只生成适应的指令集

  5. 运行yum报错Error: Cannot retrieve metalink for reposit

    http://www.netpc.com.cn/593.html 运行yum报错Error: Cannot retrieve metalink for reposit 今天给Centos通过rpm - ...

  6. 转:运行yum报错Error: Cannot retrieve metalink for reposit

    http://www.netpc.com.cn/593.html 运行yum报错Error: Cannot retrieve metalink for repository: epel. Please ...

  7. 新建SpringBoot项目运行页面报错Whitelabel Error Page This application has no explicit mapping for /error, so yo

    新建SpringBoot项目运行页面报错Whitelabel Error Page This application has no explicit mapping for /error, so yo ...

  8. 安装了nodejs后在命令行运行npm报错

    安装了nodejs后在命令行运行npm报错:Error: Cannot find module 'internal/util/types' 解决方法:删除目录“C:\Users\mengxiaobo\ ...

  9. manjaro运行virtualbox报错

    manjaro运行virtualbox报错manjaro使用添加删除程序搜索virtualbox安装后运行报错, 安装过程有选择modules的过程(这里要选择匹配当前系统内核的版本),当时不了解是干 ...

随机推荐

  1. vue组件库的基本开发步骤

    市面上目前已有各种各样的UI组件库,比如 Element 和 iView,他们的强大毋庸置疑.但是我们面临的情况是需求越来越复杂,当它们不能再满足我们需求的时候,这个时候就有必要开发一套属于自己团队的 ...

  2. KiCAD原理图更换库

    KiCAD原理图库更换 将AD的工程文件转换位KiCAD后,打开原理图,系统会自动压缩生成当前工程库,但是这样将原理图复制粘贴到其他地方时,就找不到库了,原理图就会无法显示器件符号,如何将库替换为我们 ...

  3. vue在element-ui的dialog弹出框中加入百度地图

    参考:https://blog.csdn.net/u012724595/article/details/82703579 <!-- gps弹窗 --> <el-dialog v-di ...

  4. 矩阵的 Frobenius 范数及其求偏导法则

    cr:http://blog.csdn.net/txwh0820/article/details/46392293 一.矩阵的迹求导法则   1. 复杂矩阵问题求导方法:可以从小到大,从scalar到 ...

  5. VMware下Ubuntu全屏显示

      开始是这样的 完了之后应该是这样的 1.点开菜单栏的 虚拟机---------> 安装VMware Tools 安装完了之后桌面会出现一个这样的图标 双击这个DVD,进去之后左侧目录出现了 ...

  6. Tomcat 配置访问限制:访问白名单和访问黑名单

    最近公司的阿里云服务器上配置的 Tomcat 服务器运行 java的环境,但是通过观察 Tomcat 这几天的日志发现,有很多莫名其妙的 IP 访问主机下莫名其妙的地址,如:/80./testprox ...

  7. react 数据发生变化,页面改变的原理

    数据发生变化,页面改变的原理: 比较虚拟的dom 不怎么损耗性能,真实的dom比较会损耗性能 1.state 数据 2.jsx 模板 3.生成虚拟的dom 3.数据和模板结合,生成虚拟的dom 4.用 ...

  8. vue 学习六 在组件上使用v-model

    其实这个部分应该是属于component,为什么把这玩意单独拿出来呢,原因是它这个东西比较涉及到了vue的事件,以及v-model指令的使用,还是比较综合的.所以就拿出来啦 父组件 <templ ...

  9. 影响Acorn for Mac图像打印质量的因素有什么?怎样处理这些因素才能得到打印效果最佳的图像?

    Acorn for Mac是Mac OS平台上一款比较不错的图像处理软件.acorn mac版用起来都很像神器 Photoshop,是的,它的设计目标就是成为 Photoshop 的轻量替代者,拥有所 ...

  10. QT之sqlite连接

    啥也没做,按说明直接啪啪写一堆代码 QSqlDatabase db = QSqlDatabase::addDatabase("QSQLITE"); //open datebase ...