pandas--层次化索引
data=Series(np.random.randn(10),
index=[['a','a','a','b','b','b','c','c','d','d'],
[1,2,3,1,2,3,1,2,2,3]]) data
Out[6]:
a 1 -2.842857
2 0.376199
3 -0.512978
b 1 0.225243
2 -1.242407
3 -0.663188
c 1 -0.149269
2 -1.079174
d 2 -0.952380
3 -1.113689
dtype: float64
这就是带MultiIndex索引的Series的格式化输出形式。索引之间的“间隔”表示“直接使用上面的标签”。
data.index
Out[7]:
MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]],
labels=[[0, 0, 0, 1, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 1, 2, 0, 1, 1, 2]])
对于一个层次化索引的对象,选取数据子集的操作很简单:
data['b']
Out[8]:
1 0.225243
2 -1.242407
3 -0.663188
dtype: float64 data['b':'c']
Out[10]:
b 1 0.225243
2 -1.242407
3 -0.663188
c 1 -0.149269
2 -1.079174
dtype: float64 data.ix[['b','d']]
__main__:1: DeprecationWarning:
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated
Out[11]:
b 1 0.225243
2 -1.242407
3 -0.663188
d 2 -0.952380
3 -1.113689
dtype: float64
甚至可以在“内层”中进行选取:
data[:,2]
Out[12]:
a 0.376199
b -1.242407
c -1.079174
d -0.952380
dtype: float64
data.unstack()
Out[13]:
1 2 3
a -2.842857 0.376199 -0.512978
b 0.225243 -1.242407 -0.663188
c -0.149269 -1.079174 NaN
d NaN -0.952380 -1.113689 #unstack的逆运算是stack
data.unstack().stack()
Out[14]:
a 1 -2.842857
2 0.376199
3 -0.512978
b 1 0.225243
2 -1.242407
3 -0.663188
c 1 -0.149269
2 -1.079174
d 2 -0.952380
3 -1.113689
dtype: float64
对于DataFrame,每条轴都可以有分层索引:
frame=DataFrame(np.arange(12).reshape((4,3)),
index=[['a','a','b','b'],[1,2,1,2]],
columns=[['Ohio','Ohio','Colorado'],
['Green','Red','Green']]) frame
Out[16]:
Ohio Colorado
Green Red Green
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11
各层都可以有名字。如果指定了名称,它们会显示在控制台中(不要将索引名称和轴标签混为一谈!)
frame.index.names=['key1','key2']
frame.columns.names=['state','color'] frame
Out[22]:
state Ohio Colorado
color Green Red Green
key1 key2
a 1 0 1 2
2 3 4 5
b 1 6 7 8
2 9 10 11
由于有了分部的列索引,可以轻松选取列分组:
frame['Ohio']
Out[23]:
color Green Red
key1 key2
a 1 0 1
2 3 4
b 1 6 7
2 9 10
frame.swaplevel('key1','key2')
Out[24]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
2 a 3 4 5
1 b 6 7 8
2 b 9 10 11
sortlevel则根据单个级别中的值对数据进行排序。交换级别时,常用得到sortlevel,这样最终结果也是有序的了:
frame.swaplevel(0,1)
Out[27]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
2 a 3 4 5
1 b 6 7 8
2 b 9 10 11 #交换级别0,1(也就是key1,key2)
#然后对axis=0进行排序
frame.swaplevel(0,1).sortlevel(0)
__main__:1: FutureWarning: sortlevel is deprecated, use sort_index(level= ...)
Out[28]:
state Ohio Colorado
color Green Red Green
key2 key1
1 a 0 1 2
b 6 7 8
2 a 3 4 5
b 9 10 11
frame.sum(level='key2')
Out[29]:
state Ohio Colorado
color Green Red Green
key2
1 6 8 10
2 12 14 16 frame.sum(level='color',axis=1)
Out[30]:
color Green Red
key1 key2
a 1 2 1
2 8 4
b 1 14 7
2 20 10
frame=DataFrame({'a':range(7),'b':range(7,0,-1),
'c':['one','one','one','two','two','two','two'],
'd':[0,1,2,0,1,2,3]}) frame
Out[32]:
a b c d
0 0 7 one 0
1 1 6 one 1
2 2 5 one 2
3 3 4 two 0
4 4 3 two 1
5 5 2 two 2
6 6 1 two 3
DataFrame的set_index函数会将其一个或多个列转换为行索引,并创建一个新的DataFrame:
frame2=frame.set_index(['c','d']) frame2
Out[34]:
a b
c d
one 0 0 7
1 1 6
2 2 5
two 0 3 4
1 4 3
2 5 2
3 6 1
默认情况下,那些列会从DataFrame中移除,但也可以将其保留下来:
frame.set_index(['c','d'],drop=False)
Out[35]:
a b c d
c d
one 0 0 7 one 0
1 1 6 one 1
2 2 5 one 2
two 0 3 4 two 0
1 4 3 two 1
2 5 2 two 2
3 6 1 two 3
reset_index的功能和set_index刚好相反,层次化索引的级别会被转移到列里面:
frame2.reset_index()
Out[36]:
c d a b
0 one 0 0 7
1 one 1 1 6
2 one 2 2 5
3 two 0 3 4
4 two 1 4 3
5 two 2 5 2
6 two 3 6 1
pandas--层次化索引的更多相关文章
- (三)pandas 层次化索引
pandas层次化索引 1. 创建多层行索引 1) 隐式构造 最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组 Series也可以创建多层索引 import numpy ...
- pandas中层次化索引与切片
Pandas层次化索引 1. 创建多层索引 隐式索引: 常见的方式是给dataframe构造函数的index参数传递两个或是多个数组 Series也可以创建多层索引 Series多层索引 B =Ser ...
- Pandas基本功能之层次化索引及层次化汇总
层次化索引 层次化也就是在一个轴上拥有多个索引级别 Series的层次化索引 data=Series(np.random.randn(10),index=[ ['a','a','a','b','b', ...
- pandas:由列层次化索引延伸的一些思考
1. 删除列层次化索引 用pandas利用df.groupby.agg() 做聚合运算时遇到一个问题:产生了列方向上的两级索引,且需要删除一级索引.具体代码如下: # 每个uesr每天消费金额统计:和 ...
- pandas(五)处理缺失数据和层次化索引
pandas用浮点值Nan表示浮点和非浮点数组中的缺失数据.它只是一个便于被检测的标记而已. >>> string_data = Series(['aardvark','artich ...
- 利用Python进行数据分析(11) pandas基础: 层次化索引
层次化索引 层次化索引指你能在一个数组上拥有多个索引,例如: 有点像Excel里的合并单元格对么? 根据索引选择数据子集 以外层索引的方式选择数据子集: 以内层索引的方式选择数据: 多重索引S ...
- 利用Python进行数据分析_Pandas_层次化索引
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 层次化索引主要解决低纬度形式处理高纬度数据的问题 import pandas ...
- pandas重置索引的几种方法探究
pandas重置索引的几种方法探究 reset_index() reindex() set_index() 函数名字看起来非常有趣吧! 不仅如此. 需要探究. http://nbviewer.jupy ...
- 关于groupby与层次化索引的联系和层次化标签的使用
groupby出来对象并不是dataFrame,所以直接print是看不到矩阵或者高维矩阵的,所以需要用能够产生标量值的方法去处理groupby对象,这样可以利用矩阵形式处理高维数据: 这样group ...
- pandas 数据索引与选取
我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列.区域.单元格.其对应使用的方法如下:一. 行,列 --> df[]二. 区域 --> df.loc[], df.ilo ...
随机推荐
- 复习下KMP&e-KMP
KMP算法的核心思想是next数组. 接下来,我来谈谈我对KMP数组的理解. KMP算法是用来匹配有多少相同字串的一种算法. 1.next数组记录前缀与后缀相等的位置,然后跳到这. 2.数组即记录后缀 ...
- 微服务-技术专区-链路追踪(pinpoint)-部署使用
https://naver.github.io/pinpoint/ https://github.com/naver/pinpoint 背景 随着项目微服务的进行,微服务数量逐渐增加,服务间的调用也越 ...
- Python值正则表达式(RE)
要想在Python中使用正则表达式,首先要引入模块: import re . 匹配任意一个 + 匹配至少一个 * 匹配0个至多个 ? 1个或0个(可有可无) - 表范围 \ 转义 ^ 在首 $ ...
- 将rdlc报表作为资源嵌套使用
原文:将rdlc报表作为资源嵌套使用 如果我们准备在Windows Forms里面使用rdlc报表,那么会遇到一个问题:rdlc报表到底要不要作为附属文件的方式随程序发布? 这样做的优点是:报表可以后 ...
- svnlook - Subversion 仓库检索工具
SYNOPSIS 总览 svnlook command /path/to/repos [options] [args] OVERVIEW 概述 Subversion 是一个版本控制系统,允许保存旧版本 ...
- androidstudio 2.3.3 jni过程汇总(2):2、使用so文件
2.使用so文件 1.在java文件中System.loadLibrary加载包,并且引入native方法. 2.在app/src/main/下新建jniLibs文件夹,将so包带arm文件夹形式导入 ...
- Delphi 窗体函数 ShowScrollBar 控制滚动条
API函数 函数来源:FUNCTION ulong ShowScrollBar(ulong hwnd,ulong wBar,ulong bShow) LIBRARY "user32.dll& ...
- Vue学习笔记【9】——Vue指令之v-for和key属性
迭代数组(普通数组.对象数组) <ul> <li v-for="(item, i) in list">索引:{{i}} --- 姓名:{{item.name ...
- 半途而废的Java爬虫学习经历
最近在面试,发现Java爬虫对于小数据量数据的爬取的应用还是比较广,抽空周末学习一手,留下学习笔记 Java网络爬虫 简单介绍 爬虫我相信大家都应该知道什么,有什么用,主要的用途就是通过程序自动的去获 ...
- 2019 ACM/ICPC Asia Regional shanxia D Miku and Generals (二分图黑白染色+01背包)
Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...