传送门

参考资料:

  [1]:https://blog.csdn.net/weixin_43262291/article/details/90271693

题意:

  给你一个包含 n 个数的序列 a,并且 max{ai} ≤ x;

  定义一个操作 f(L,R) 将序列 a 中  L ≤ ai ≤ R 的数删除;

  问有多少对满足条件的 (L,R) 使得执行完 f(L,R) 操作后的序列非递减;

题解:

  [1]博文看了一晚上,终于理解了;

  枚举左区间 i,找到符合条件的最小的右区间 ki,f(1,k1),f(2,k2),....,f(x,kx);

  如果执行完 f(1,k1) 后序列非递减,那么执行完 f(1,k1+1),f(1,k1+2),....,f(1,x) 后同样会使得序列非递减;

  f(i,ki)同理,那么最终答案就是 (x-k1+1)+(x-k2+1)+......+(x-kx+1);

  如何高效的求解k1,k2,....,kx呢?

  首先看看相关变量解释:

int n,x;///max{a[i]} <= x
int a[maxn];
int l[maxn];///l[i]:数字i第一次出现的位置
int r[maxn];///r[i]:数字i最后一次出现的位置
int L[maxn];///L[i]:数字[i,n]最先出现的位置
int R[maxn];///R[i]:数字[1,i]最后出现的位置

  预处理出l,r,L,R数组:

 mem(l,INF);
mem(r,);
for(int i=;i <= n;++i)
{
l[a[i]]=min(i,l[a[i]]);
r[a[i]]=i;
}
mem(L,INF);
mem(R,);
for(int i=x;i >= ;--i)
L[i]=min(L[i+],l[i]);
for(int i=;i <= x;++i)
R[i]=max(R[i-],r[i]);

  明确一点,k1 ≤ k2 ≤ ...... ≤ kx

  那么,首先求出 k1,然后,递推出 ki

  如何求解k1呢?

  上述查找可转化为找最小的 k1 使得 [k1+1,x] 组成的序列非递减;

int k=x;///如果[k,x]非递减,那么k-1找下一个位置
for(;k > && r[k] <= L[k+];--k);

  如何根据 k1 递推出 ki 呢?

for(int i=;i <= x && R[i-] <= l[i-];++i)
for(;k < i || R[i-] > L[k+];++k);///找到第一个使得R[i-1]>=L[k+1]的k

AC代码:

 #include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
#define INF 0x3f3f3f3f
const int maxn=1e6+; int n,x;///max{a[i]} <= x
int a[maxn];
int l[maxn];///l[i]:数字i第一次出现的位置
int r[maxn];///r[i]:数字i最后一次出现的位置
int L[maxn];///L[i]:数字[i,n]最先出现的位置
int R[maxn];///R[i]:数字[1,i]最后出现的位置 ll Solve()
{
mem(l,INF);
mem(r,);
for(int i=;i <= n;++i)
{
l[a[i]]=min(i,l[a[i]]);
r[a[i]]=i;
}
mem(L,INF);
mem(R,);
for(int i=x;i >= ;--i)
L[i]=min(L[i+],l[i]);
for(int i=;i <= x;++i)
R[i]=max(R[i-],r[i]); int k=x;///如果[k,x]非递减,那么k-1找下一个位置
for(;k > && r[k] <= L[k+];--k); ll ans=x-k+; ///要确保[1,i-1]非递减
///且已知[k+1,x]非递减
for(int i=;i <= x && R[i-] <= l[i-];++i)
{
for(;k < i || R[i-] > L[k+];++k);///找到第一个使得R[i-1]>=L[k+1]的k ans += x-k+;
}
return ans;
}
int main()
{
// freopen("C:\\Users\\hyacinthLJP\\Desktop\\in&&out\\contest","r",stdin);
scanf("%d%d",&n,&x);
for(int i=;i <= n;++i)
scanf("%d",a+i); printf("%lld\n",Solve());
return ;
}

Educational Codeforces Round 65 (Rated for Div. 2) E. Range Deleting(思维+coding)的更多相关文章

  1. Educational Codeforces Round 65 (Rated for Div. 2)题解

    Educational Codeforces Round 65 (Rated for Div. 2)题解 题目链接 A. Telephone Number 水题,代码如下: Code #include ...

  2. Educational Codeforces Round 65 (Rated for Div. 2) D. Bicolored RBS

    链接:https://codeforces.com/contest/1167/problem/D 题意: A string is called bracket sequence if it does ...

  3. Educational Codeforces Round 65 (Rated for Div. 2) C. News Distribution

    链接:https://codeforces.com/contest/1167/problem/C 题意: In some social network, there are nn users comm ...

  4. Educational Codeforces Round 65 (Rated for Div. 2) B. Lost Numbers

    链接:https://codeforces.com/contest/1167/problem/B 题意: This is an interactive problem. Remember to flu ...

  5. Educational Codeforces Round 65 (Rated for Div. 2) A. Telephone Number

    链接:https://codeforces.com/contest/1167/problem/A 题意: A telephone number is a sequence of exactly 11  ...

  6. Educational Codeforces Round 65 (Rated for Div. 2)B. Lost Numbers(交互)

    This is an interactive problem. Remember to flush your output while communicating with the testing p ...

  7. [ Educational Codeforces Round 65 (Rated for Div. 2)][二分]

    https://codeforc.es/contest/1167/problem/E E. Range Deleting time limit per test 2 seconds memory li ...

  8. Educational Codeforces Round 65 (Rated for Div. 2)

    A:签到. #include<bits/stdc++.h> using namespace std; #define ll long long #define inf 1000000010 ...

  9. Educational Codeforces Round 65 (Rated for Div. 2)(ACD)B是交互题,不怎么会

    A. Telephone Number A telephone number is a sequence of exactly 11 digits, where the first digit is  ...

随机推荐

  1. SQL优化神器 - Tosska SQL Tuning Expert Pro for Oracle

    SQL Tuning Expert Pro for Oracle 是Tosska 公司推出的划时代SQL优化工具.它可以帮助SQL开发人员和DBA: 找到最快的等价SQL: 调整执行计划: 管理SQL ...

  2. Permutations II 去掉重复的全排列

    Given a collection of numbers that might contain duplicates, return all possible unique permutations ...

  3. 【JZOJ4924】【NOIP2017提高组模拟12.17】向再见说再见

    题目描述 数据范围 =w= 设h[i]表示,甲队得到i分的方案数. 那么h[(n+k)/2]和h[(n−k)/2]就是答案. 设g[i]表示,甲队得到至少i分的方案数. 那么h[i]=g[i]−∑j& ...

  4. 【JZOJ4790】【NOIP2016提高A组模拟9.21】选数问题

    题目描述 在麦克雷的面前有N个数,以及一个R*C的矩阵.现在他的任务是从N个数中取出R*C个,并填入这个矩阵中.矩阵每一行的法值为本行最大值与最小值的差,而整个矩阵的法值为每一行的法值的最大值.现在, ...

  5. 大数据技术之HA 高可用

    HDFS HA高可用 1.1 HA概述 1)所谓HA(High Available),即高可用(7*24小时不中断服务). 2)实现高可用最关键的策略是消除单点故障.HA严格来说应该分成各个组件的HA ...

  6. 大数据技术之Hive

    第1章 Hive入门 1.1 什么是Hive Hive:由Facebook开源用于解决海量结构化日志的数据统计. Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提 ...

  7. oracle-Immediate

    从shutdown immediate命令发布起,禁止建立任何新的oracle连接 未提交的事务被回退.因此,处于一个事务中间的用户将失去所有未提交的劳动成果. oracle不等待客户断开连接.任何未 ...

  8. thinkphp常用的一些函数

    $this->display ( "Public:login" ); import ( 'Wechat', APP_PATH . 'Common/Wechat', '.cla ...

  9. 小爬爬6.scrapy回顾和手动请求发送

    1.数据结构回顾 #栈def push(self,item) def pop(self) #队列 def enqueue(self,item) def dequeue(self) #列表 def ad ...

  10. ios开发――解决UICollectionView的cell间距与设置不符问题

    在用UICollectionView展示数据时,有时我们希望将cell的间距调成一个我们想要的值,然后查API可以看到有这么一个属性: - (CGFloat)minimumInteritemSpaci ...