sequence——强行推式子+组合意义
考虑长度<=x的方案数F(x),然后(F(x)-F(x-1))*x贡献到答案里
n平方的做法可以直接DP,
感觉有式子可言,
就推出式子:类似coat,每个长度为i的计算i次。
再容斥下:
F是方案数,还是求:
枚举分成的段数,枚举多少个超过i进行容斥:
突破口:有个n-i*k-1,意味着i*k<=n,这样的i和k暴力枚举一共nlogn复杂度!
提出来,考虑干掉j
强行推式子:
处理:
(怎么看怎么也看不出什么道理的样子)
来找组合意义吧:
有n-ik个球,我们先从中选出j个,再从选出的j个中选出k个。在j个球中我们选出一个特殊的球,对于剩下的球用m-1种颜色染色。
考虑讨论这个特殊的球是不是这k个球中的
即可得到;
(这里少写了C(n-i*k-k,k))
预处理m-1的次幂和m的次幂和阶乘阶乘逆元
O(nlogn)
别忘了最后用n*m^n-
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
#define pb push_back
#define solid const auto &
#define enter cout<<endl
#define pii pair<int,int>
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);(fl==true)&&(x=-x);}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');} int mod;
namespace Modulo{
int ad(int x,int y){return (x+y)>=mod?x+y-mod:x+y;}
void inc(int &x,int y){x=ad(x,y);}
int mul(int x,int y){return (ll)x*y%mod;}
void inc2(int &x,int y){x=mul(x,y);}
int qm(int x,int y=mod-){int ret=;while(y){if(y&) ret=mul(x,ret);x=mul(x,x);y>>=;}return ret;}
}
using namespace Modulo;
namespace Miracle{
const int N=+;
int n,m;
int jie[N],inv[N];
int iv[N];
int m0[N],m1[N];
int C(int n,int m){
if(n<||m<||n<m) return ;
return mul(jie[n],mul(inv[m],inv[n-m]));
}
int main(){
rd(n);rd(m);rd(mod);
jie[]=;
for(reg i=;i<=n;++i) jie[i]=mul(jie[i-],i);
inv[n]=qm(jie[n],mod-);
for(reg i=n-;i>=;--i) inv[i]=mul(inv[i+],i+);
iv[]=;
for(reg i=;i<=n;++i){
iv[i]=mul(mod-mod/i,iv[mod%i]);
}
m0[]=m1[]=;
for(reg i=;i<=n;++i){
m0[i]=mul(m0[i-],m);
m1[i]=mul(m1[i-],m-);
}
int ans=;
for(reg i=;i<n;++i){
for(reg k=;k<=n;++k){
if(i*k+k>n) break;
int tmp=;//
if(k!=) tmp=ad(tmp,mul(C(n-i*k,k),mul(k,mul(m1[k-],m0[n-i*k-k]))));
if(n-i*k-k->=) tmp=ad(tmp,mul(C(n-i*k,k),mul(m1[k],mul(m0[n-i*k-k-],n-i*k-k))));
tmp=mul(tmp,(k&)?mod-:);
tmp=mul(tmp,iv[n-i*k]);
ans=ad(ans,tmp);
}
}
ans=mul(ans,m);
ans=ad(mul(n,qm(m,n)),mod-ans);
ot(ans);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
*/
突破口是i,k总共对数nlogn级别,干掉j用组合意义大力推导
sequence——强行推式子+组合意义的更多相关文章
- LOJ 3399 -「2020-2021 集训队作业」Communication Network(推式子+组合意义+树形 DP)
题面传送门 一道推式子题. 首先列出柿子,\(ans=\sum\limits_{T_2}|T_1\cap T_2|·2^{T_1\cap T_2}\) 这个东西没法直接处理,不过注意到有一个柿子 \( ...
- Codeforces 917D - Stranger Trees(矩阵树定理/推式子+组合意义)
Codeforces 题目传送门 & 洛谷题目传送门 刚好看到 wjz 在做这题,心想这题之前好像省选前做过,当时觉得是道挺不错的题,为啥没写题解呢?于是就过来补了,由此可见我真是个大鸽子(( ...
- Atcoder Grand Contest 013 E - Placing Squares(组合意义转化+矩阵快速幂/代数推导,思维题)
Atcoder 题面传送门 & 洛谷题面传送门 这是一道难度 Cu 的 AGC E,碰到这种思维题我只能说:not for me,thx 然鹅似乎 ycx 把题看错了? 首先这个平方与乘法比较 ...
- Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...
- 牛客练习赛43F(推式子)
要点 题目链接 1e18的数据无法\(O(n)\)的容斥,于是推式子,官解,其中式子有点小错误 不必预处理mu,直接按照素数的个数判断正负即可 #include <bits/stdc++.h&g ...
- IM推送保障及网络优化详解(二):如何做长连接加推送组合方案
对于移动APP来说,IM功能正变得越来越重要,它能够创建起人与人之间的连接.社交类产品中,用户与用户之间的沟通可以产生出更好的用户粘性. 在复杂的 Android 生态环境下,多种因素都会造成消息推送 ...
- 【cf961G】G. Partitions(组合意义+第二类斯特林数)
传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...
- BZOJ5093 图的价值——推式子+第二类斯特林数
原题链接 题解 题目等价于求这个式子 \[ans=n2^{\frac{(n-1)(n-2)}{2}}\sum\limits_{i=0}^{n-1}\binom{n-1}{i}i^k\] 有这么一个式子 ...
- HDU 5860 Death Sequence(递推)
HDU 5860 Death Sequence(递推) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5860 Description You ...
随机推荐
- 强强联合 阿里云 RDS for SQL Server 与 金蝶 K/3 WISE 产品实现兼容适配
强强联合 阿里云 RDS for SQL Server 与 金蝶 K/3 WISE 产品实现兼容适配,原K/3 WISE用户通过简单配置就可以无缝搭配RDS SQL Server使用,不需再费时费力自 ...
- OpenLayers添加和删除控件
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- Android——app基础
Android Application基础 系统启动过程 APK文件介绍 APK是Android Package的缩写,即android安装包.APK 文件其实是zip 格式,但后缀名被修改为apk ...
- No.6 Verilog 其他论题
(1)任务 **任务类似于一段程序,可以提供一种能力,使设计者可以从设计描述的不同位置执行共同的代码段.任务可以包含时序控制, 可以调用其它任务和函数. 任务的定义格式: task[automat ...
- Python数据分析与展示[第三周](pandas数据类型操作)
数据类型操作 如何改变Series/ DataFrame 对象 增加或重排:重新索引 删除:drop 重新索引 .reindex() reindex() 能够改变或重排Series和DataFrame ...
- CSS中的margin和padding的用法和区别
在CSS中margin是指从自身边框到另一个容器边框之间的距离,就是容器外距离. 语法结构 (1)padding-left:10px; 左内边距 (2)padding-right:10px; 右内边距 ...
- 帮助你构建云服务的开源平台:openstack
from:http://os.51cto.com/art/201205/336386_all.htm 概念架构 3-5 OpenStack Compute服务架构 点评:从openstack的能力来看 ...
- day4-转自金角大王
Python之路,Day4 本节大纲 迭代器&生成器 装饰器 基本装饰器 多参数装饰器 递归 算法基础:二分查找.二维数组转换 正则表达式 常用模块学习 作业:计算器开发 实现加减乘除及 ...
- homework-//2017-12-27 11:11 星期三
//2017-12-27 11:11 星期三 const WEEKMAP = { 0:"sunday", 1:"monday", 2:"tuesday ...
- 基于GD库的php验证码类(支持中英文字体、背景、干扰点线、扭曲…….)
转自:http://www.blhere.com/1168.html 12345678910111213141516171819202122232425262728293031323334353637 ...