Chapter 4 图
Chapter 4 图
.
1- 图的存储结构
无向图:对称
有向图:……
2- 图的遍历
1 深度优先搜索(DFS)
类似于二叉树的先序遍历
2 广度优先搜索(BFS)
类似于二叉树的层序遍历
3- 最小(代价)生成树(针对无向图)MST
1 Prim算法 O(|V2|)
只与顶点数有关,与边无关
2 Kruskal算法 O(|E|log|E|)
只与边数有关,与顶点数无关
//什么样的图最小生成树唯一?图中所有权值不相等。
4- 最短路径
1 Dijkstra O(|V2|)
单源最短路径
l 要找出所有节点的最短路径,需要对每一个结点用Dijkstra O(|V3|)
l 边上有负权值,不适用
2 Floyd O(|V3|)
求解任意一对顶点间的最短距离
l 允许带有负权值的边,但不允许有负权值边组成的回路
5- 拓扑排序 O(|V|+|E|)
1 AOV网
以顶点表示活动,以边表示活动的先后次序,且没有回路的有向图
2 对有向无环图的拓扑排序
可能不唯一:如果有多个入度为0的顶点,可任选一个输出
6- 关键路径
1 AOE网
活动在边上的网,与AOV网相比
相同点:都是有向无环图
不同点:AOE网边表示活动、有权值,表示活动持续时间。顶点表示事件,事件是图中新活动开始旧活动结束的标志。
AOV网边表示活动之间的相互关系,无权值,顶点表示活动。
l 只存在一个入度为0的点称为源点
求关键路径的步骤:
1 拓扑排序
2 事件Vk的最早发生时间Ve(k)
V1->Vi max
3 时间Vk的最迟发生时间Vl(k)
从后向前算 min = 后-max
4 活动ai的最早开始时间e(i)
边上首结点的Ve(k)
5 活动ai的最迟开始时间l(i)
边上尾结点的Vl(k)-ai
6 d = l(i) - e(i)
//可以通过加快那些在所有关键路径上的关键活动来缩短工期
//关键路径不唯一
注:
1- 邻接矩阵的空间复杂度O(|V2|)
2- 邻接表—方便找出所有邻边(不唯一)
邻接矩阵—给定的两个顶点是否存在边
3- 十字链表—有向图的链式存储
容易求得顶点的入度和出度
图的十字链表表示不唯一,但一个十字链表可以唯一确定一个图。
4- 邻接多重表是无向图的另一种链式存储结构
5- BFS借助一个辅助队列,空间复杂度是O(|V|)
邻接表O(|V|+|E|),邻接矩阵O(|V2|)
6- DFS借助一个栈,空间复杂度是O(|V|)
邻接表O(|V|+|E|),邻接矩阵O(|V2|)
7- 当各边权值相等时,广度优先算法可以解决单源最短路径问题。
8- Prim O(|V2|)
Kruskal O(|E|log|E|)
Dijkstra O(|V2|)
Floyd O(|V3|)
拓扑 O(|V|+|E|)
9- 最短路径一定是简单路径
10- 可以判断有向图是否有环:深度优先搜索,拓扑排序
Chapter 4 图的更多相关文章
- Chapter 7(图)
1.Prim算法生成最小生成树 //Prim算法生成最小生成树 void MiniSpanTree_Prim(MGraph G) { int min,i,j,k; int adjvex[MAXVEX] ...
- 【译】x86程序员手册13-第5章 内存管理
Chapter 5 Memory Management 内存管理 The 80386 transforms logical addresses (i.e., addresses as viewed b ...
- 《算法导论》习题解答 Chapter 22.1-5(求平方图)
一.邻接矩阵实现 思路:如果是邻接矩阵存储,设邻接矩阵为A,则A*A即为平方图,只需要矩阵相乘即可: 伪代码: for i=1 to n for j=1 to n for k=1 to n resul ...
- 《算法导论》习题解答 Chapter 22.1-3(转置图)
一.邻接表实现 思路:一边遍历,一边倒置边,并添加到新的图中 邻接表实现伪代码: for each u 属于 Vertex for v 属于 Adj[u] Adj1[v].insert(u); 复杂度 ...
- Android Programming: Pushing the Limits -- Chapter 7:Android IPC -- Messenger
Messenger类实际是对Aidl方式的一层封装.本文只是对如何在Service中使用Messenger类实现与客户端的通信进行讲解,对Messenger的底层不做说明.阅读Android Prog ...
- [转]第四章 使用OpenCV探测来至运动的结构——Chapter 4:Exploring Structure from Motion Using OpenCV
仅供参考,还未运行程序,理解部分有误,请参考英文原版. 绿色部分非文章内容,是个人理解. 转载请注明:http://blog.csdn.net/raby_gyl/article/details/174 ...
- PRML Chapter 2. Probability Distributions
PRML Chapter 2. Probability Distributions P68 conjugate priors In Bayesian probability theory, if th ...
- WITCH CHAPTER 0 [cry] 绝密开发中的史克威尔艾尼克斯的DX12技术演示全貌
西川善司的[WITCH CHAPTER 0 cry]讲座 ~绝密开发中的史克威尔艾尼克斯的DX12技术演示全貌 注:日文原文地址: http://pc.watch.impress.co.jp/d ...
- Chapter 3: Connector(连接器)
一.概述 Tomcat或者称之为Catalina(开发名称),可以简化为两个主要的模块,如下图: 多个Connector关联一个Container.之所以需要多个Connector,是为了处理多种协议 ...
随机推荐
- JS对象 indexOf() 方法可返回某个指定的字符串值在字符串中首次出现的位置。
返回指定的字符串首次出现的位置 indexOf() 方法可返回某个指定的字符串值在字符串中首次出现的位置. 语法 stringObject.indexOf(substring, startpos) 参 ...
- 小白 Linux下安装Elasticsearch5.X
最近做个项目需要使用到 Elasticsearch5 刚接触liunx 遇到了很多问题记录下 以这篇文章为基础 http://www.cnblogs.com/ShawnYuki/p/6818677.h ...
- AM8互联设置方法
Am8互联设置 这个只需要部署在一个总部的AM8的 Oiorg所在机器上就可以 环境: Windows 2012 or windows 2008,IIS ,.Net4 AM8 数据库必须升级到:201 ...
- Python自学:第四章 在for循环结束后执行一些操作
# -*- coding: GBK -*- magicians = ['alice', 'david', 'carolina'] for magician in magicians: print(ma ...
- matplotlib 画图颜色参数值及对应色卡
matplotlib 色卡对应参数值 cnames = { 'aliceblue': '#F0F8FF', 'antiquewhite': '#FAEBD7', 'aqua': '#00FFFF', ...
- 树形dp——cf1010D
一个点的改变如果对根节点的值不会造成任何影响,那么这个点的所有子节点的改变也不会对根节点造成影响 因为每次只改一个叶子节点,也就是一条到根的路径,可以先预处理出初始情况下的每个结点的值 分别讨论根节点 ...
- git 使用案例(本地仓库无缝迁移远程仓库)
之前都是直接从gitlab上clone代码,然后把本地代码copy过去,然后push.有点麻烦,查询了一下如何无缝从本地仓库迁移到远程仓库.记录一波... 下面的例子采用github来做例子. 1. ...
- 2428: [HAOI2006]均分数据
模拟退火.一种十分玄学的随机算法,网上可以查到比较详细的资料. 先随机地把数分成m组,每次随机地选择一个数,一开始直接选最小的一组,后来就随机一组,把这个数换到该组看看答案能不能变小,如果变小则换,如 ...
- python 集合(set)
1.集合的创建 集合是一个无序不重复元素的集.基本功能包括关系测试和消除重复元素. 创建集合:大括号或 set() 函数可以用来创建集合.注意:想要创建空集合,你必须使用 set() 而不是 {},后 ...
- day 66 Django基础二之URL路由系统
Django基础二之URL路由系统 本节目录 一 URL配置 二 正则表达式详解 三 分组命名匹配 四 命名URL(别名)和URL反向解析 五 命名空间模式 一 URL配置 Django 1.11 ...