$loj$10222 佳佳的$Fibonacci$ 矩阵快速幂
正解:矩阵快速幂
解题报告:
一看到这个就应该能想到矩阵快速幂?
然后就考虑转移式,发现好像直接想不好想,,,主要的问题在于这个*$i$,就很不好搞$QAQ$
其实不难想到,$\sum_{i=1}^{n}a_i\cdot(n-i)$这样一个式子是可以在矩阵快速幂中推出来的(类似这个形式的都可,,,就随着编号递增系数递减这样子$QwQ$
具体来说就是表示成$\sum_{i=1}^{n}\sum_{j=1}^{i}a_j$,就欧克辣(具体实现后面港,,,
但是问题在于,它是$\sum_{i=1}^{n}a_i\cdot i$这样的,就随着编号递增系数递增这样子的$QwQ$
那显然就想到,变形嘛,就变成$\sum_{i=1}^{n}a_i\cdot n-\sum_{i=1}^{n}a_i\cdot(n-i)$这样子
然后就做完辣,,,?
剩下的就是考虑怎么表示出$\sum_{i=1}^{n}a_i$和$\sum_{i=1}^{n}a_i\cdot(n-i)$辣
对于第一个的话,可以考虑$\begin{bmatrix}\sum_{j=1}^{i-1} f_i \\ f_i\\ f_{i-1}\end{bmatrix}$$\cdot$$\begin{bmatrix}1 & 1 & 0\\ 0 & 1 & 1\\ 0 & 1 & 0\end{bmatrix}$,就欧克辣
然后第二个就差不多的方法,再加一维就好,$\begin{bmatrix}\sum _{j=1}^{i-1}\sum_{k=1}^{j}f_k\\ \sum_{j=1}^{i}f_j\\ f_{i+1}\\ f_{i}\end{bmatrix}$$\cdot$$\begin{bmatrix}1 & 1 & 0 & 0\\ 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 1\\0 & 0 & 1 & 0\end{bmatrix}$
欧克做完辣,,,
#include<bits/stdc++.h>
using namespace std;
#define il inline
#define int long long
#define gc getchar()
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i) int n,mod;
struct matrix{int mat[][];il void clr(){memset(mat,,sizeof(mat));}}e1,e2,fib; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il matrix multi(matrix gd,matrix gs)
{
matrix ret;ret.clr();
rp(i,,)
rp(j,,)
rp(k,,)ret.mat[i][j]=(ret.mat[i][j]+gd.mat[i][k]*gs.mat[k][j]%mod)%mod;
return ret;
}
il matrix power_1(ri x)
{matrix ret;ret.clr();ret.mat[][]=;while(x){if(x&)ret=multi(ret,e1);e1=multi(e1,e1);x>>=;}return ret;}
il matrix power_2(ri x)
{matrix ret;ret.clr();ret.mat[][]=;while(x){if(x&)ret=multi(ret,e2);e2=multi(e2,e2);x>>=;}return ret;}
namespace sub1
{
il void main()
{
int fib1=,fib2=,as=;
rp(i,,n){as=(as+1ll*fib1*i%mod)%mod;fib2+=fib1;fib1=fib2-fib1;if(fib2>=mod)fib2-=mod;}
printf("%lld\n",as);
}
} main()
{
// freopen("fib.in","r",stdin);freopen("fib.out","w",stdout);
n=read();mod=read();
// if(n<=100)return sub1::main(),0;
e1.clr();e1.mat[][]=;e1.mat[][]=;e1.mat[][]=;e1.mat[][]=;e1.mat[][]=;
e2.clr();e2.mat[][]=;e2.mat[][]=;e2.mat[][]=;e2.mat[][]=;e2.mat[][]=;e2.mat[][]=;e2.mat[][]=;
matrix as1=power_1(n),as2=power_2(n);
printf("%lld\n",((as1.mat[][]*n%mod-as2.mat[][])%mod+mod)%mod);
return ;
}
最后放下代码就好辣!(跑得飞慢,,,QAQ
upd:
今天交流了下,,,发现我这个方法太呆了$TT$
说个神一点儿的方法
可以发现斐波拉契数列其实有个规律,,,就 $ 1+\sum_{j=1}^{i} f_{j}=f_{i} $ (其实是这个:$\sum_{i=1}^nf_i=f_{n+2}-f_2$
设$s_i=\sum_{j=1}^i$
可以得到,$ans=n\cdot s_n-(s_{1}+s_{2}+...+s_{n-1})$
代入上面那个然后变形一下可得,$ans=n\cdot f_{n+2}-f_{n+3}+n+2$
然后就傻逼题了,懒得放代码辽太$easy$辣$QAQ$
随机推荐
- 如何解决iOS内存错误
由于iOS5.0之前没有自动应用计数机制,也没有Java那样的垃圾回收功能.我们都需要自己管理和控制对象的回收,这是一件很麻烦的事情,也是做iOS项目中最容易出现的问题.如果不掌握这些方法,调试这些问 ...
- 从零学React Native之06flexbox布局
前面我们接触了好多React Native代码, 并没有介绍RN中的组件具体是如何布局的,这一篇文章,重点介绍下flexbox布局. 什么是flexbox布局 React中引入了flexbox概念,f ...
- 使用vux组件库常见报错($t)处理
错误一: [Vue warn]: Property or method "$t" is not defined on the instance but referenced dur ...
- Oracle数据字典全解
一.概念: 1.数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表. 数据字典里存有用户信息.用户的权限信息 ...
- behavior planning——10 behaior planning pseudocode
One way to implement a transition function is by generating rough trajectories for each accessible & ...
- 学习微信小程序
1.从小程序指南文档开始看起:小程序指南 2.开发者工具下载:小程序开发工具
- Fiddler快速入门
Fiddler是一个免费.强大.跨平台的HTTP抓包工具.Wireshark也是一个强大的抓包工具,不过Wireshark是一个通用的抓包工具,主要精力放在各种协议上了,针对HTTP的特定功能较少.所 ...
- Element-ui学习笔记3--Form表单(二)
Input输入框 Input 为受控组件,它总会显示 Vue 绑定值. 通常情况下,应当处理 input 事件,并更新组件的绑定值(或使用v-model).否则,输入框内显示的值将不会改变. 不支持 ...
- 2019-8-31-dotnet-core-黑科技·String.IndexOf-性能
title author date CreateTime categories dotnet core 黑科技·String.IndexOf 性能 lindexi 2019-08-31 16:55:5 ...
- Python--day25--面向对象之多态
多态(Python天生支持多态) 多态指的是一类事物有多种形态 动物有多种形态:人,狗,猪 import abc class Animal(metaclass=abc.ABCMeta): #同一类事物 ...