必做:

[*] warmUpExercise.m - Simple example function in Octave/MATLAB
[*] plotData.m - Function to display the dataset
[*] computeCost.m - Function to compute the cost of linear regression
[*] gradientDescent.m - Function to run gradient descent

1.warmUpExercise.m

A = eye();

2.plotData.m

plot(x, y, 'rx', 'MarkerSize', ); % Plot the data
ylabel('Profit in $10,000s'); % Set the y-axis label
xlabel('Population of City in 10,000s'); % Set the x-axis label

3.computeCost.m

function J = computeCost(X, y, theta)
%COMPUTECOST Compute cost for linear regression
% J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
% parameter for linear regression to fit the data points in X and y % Initialize some useful values
m = length(y); % number of training examples % You need to return the following variables correctly
J = ; % ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta
% You should set J to the cost. H = X*theta-y;
J = (1/(2*m))*sum(H.*H); % ========================================================================= end

公式:   

注意matlab中  .* 的用法。

4.gradientDescent.m

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
%GRADIENTDESCENT Performs gradient descent to learn theta
% theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by
% taking num_iters gradient steps with learning rate alpha % Initialize some useful values
m = length(y); % number of training examples
J_history = zeros(num_iters, ); for iter = :num_iters % ====================== YOUR CODE HERE ======================
% Instructions: Perform a single gradient step on the parameter vector
% theta.
%
% Hint: While debugging, it can be useful to print out the values
% of the cost function (computeCost) and gradient here.      H = X*theta-y;
    theta(1)=theta(1)-alpha*(1/m)*sum(H.*X(:,1));
    theta(2)=theta(2)-alpha*(1/m)*sum(H.*X(:,2)); % ============================================================ % Save the cost J in every iteration
J_history(iter) = computeCost(X, y, theta); end end

单变量梯度下降

对函数J(θ)求偏导

即 H.*X(:,1)

θi向着梯度最小的方向减少,alpha为步长。

theta(i)=theta(i)-alpha*(1/m)*sum(H.*X(:,i));

Coursera machine learning 第二周 编程作业 Linear Regression的更多相关文章

  1. Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables

    https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables ...

  2. Coursera machine learning 第二周 quiz 答案 Octave/Matlab Tutorial

    https://www.coursera.org/learn/machine-learning/exam/dbM1J/octave-matlab-tutorial Octave Tutorial 5  ...

  3. Coursera-AndrewNg(吴恩达)机器学习笔记——第二周编程作业

    一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌 ...

  4. Coursera-AndrewNg(吴恩达)机器学习笔记——第二周编程作业(线性回归)

    一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌 ...

  5. 【Machine Learning】单参数线性回归 Linear Regression with one variable

        最近开始看斯坦福的公开课<Machine Learning>,对其中单参数的Linear Regression(未涉及Gradient Descent)做个总结吧. [设想]    ...

  6. Andrew Ng机器学习编程作业: Linear Regression

    编程作业有两个文件 1.machine-learning-live-scripts(此为脚本文件方便作业) 2.machine-learning-ex1(此为作业文件) 将这两个文件解压拖入matla ...

  7. [Machine Learning (Andrew NG courses)]II. Linear Regression with One Variable

  8. [Machine Learning (Andrew NG courses)]IV.Linear Regression with Multiple Variables

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvenFoXzE5OTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...

  9. Coursera公开课-Machine_learing:编程作业

    第二周编程作业:Linear Regression 分为单一变量和多变量,假想函数为:hθ(x)=θ0+θ1x1+θ2x2+θ3x3+⋯+θnxn.明显已经包含单一变量的情况,所以完成多变量可以一并解 ...

随机推荐

  1. Oracle、SQLServer、ArcSDE怎么查看版本、补丁

    http://blog.csdn.net/linghe301/article/details/6712544

  2. 面试题:如何在不使用临时变量temp的情况下交换两个整数的值?

    利用一个小技巧,一个整数a在异或另一个整数b两次以后所得的值还是整数a. 具体的过程我们可以自己找两个整数以二进制的形式自己在纸上画一下他们的异或过程.(异或的运算符号为"^") ...

  3. ES6中的迭代器(Iterator)和生成器(Generator)(一)

    用循环语句迭代数据时,必须要初始化一个变量来记录每一次迭代在数据集合中的位置,而在许多编程语言中,已经开始通过程序化的方式用迭代器对象返回迭代过程中集合的每一个元素 迭代器的使用可以极大地简化数据操作 ...

  4. log4j教程 5、示例程序

    前面我们已经看到了如何创建一个配置文件.本教程将讲解如何生成调试信息和日志在一个简单的文本文件. 下面是我们的例子中创建了一个简单的配置文件.这里再重复一次: 下载最新的Log4j库:http://l ...

  5. ElasticSearch5.5.2:Windows下ElasticSearch安装配置

    环境 1.Windows10企业版X64 2.JDK-1.8 3.ElasticSearch-5.5.2 4.elasticsearch-head插件 5.node-v6.11.2-x64.msi 1 ...

  6. Gacutil.exe(全局程序集缓存工具)

    全局程序集缓存 .NET Framework (current version) 其他版本 安装有公共语言运行时的每台计算机都具有称为全局程序集缓存的计算机范围内的代码缓存.全局程序集缓存中存储了专门 ...

  7. [Algorithms] Classify Mystery Items with the K-Nearest Neighbors Algorithm in JavaScript

    The k-nearest neighbors algorithm is used for classification of unknown items and involves calculati ...

  8. 用typeof查看数据类型&&用parseInt解析数字,并求和

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. vscode - 更改emmet生成代码

    有时候生成的代码,并不适用自己,所以想想改生成代码: 因为windows查找文件/文件内容非常慢,所以借用了一下Linux的搜索命令,查找了一下 ie=edge  ,最后,找到了 expand-ful ...

  10. sql习题练习

    表结构: create database MyCompany go use MyCompany go create table Departments ( Department_ID ,) prima ...