Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 20351   Accepted: 10284

Description

Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers among these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be only of theoretical interest. 
This problem involves the efficient computation of integer roots of numbers. 
Given an integer n>=1 and an integer p>= 1 you have to write a program that determines the n th positive root of p. In this problem, given such integers n and p, p will always be of the form k to the nth. power, for an integer k (this integer is what your program must find).

Input

The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs 1<=n<= 200, 1<=p<10101 and there exists an integer k, 1<=k<=109 such that kn = p.

Output

For each integer pair n and p the value k should be printed, i.e., the number k such that k n =p.

Sample Input

  1. 2 16
  2. 3 27
  3. 7 4357186184021382204544

Sample Output

  1. 4
  2. 3
  3. 1234
    注:这题分类是贪心算法,但是看了discuss之后竟然发现用double一句可以AC,也是醉了
    k^n=p
    n=log(p)/log(k)
    log(k)=log(p)/n
    2^log(k)=2^(log(p)/n)
    k=p^(1/n)
    附:floatdoublelong double的范围
    类型          长度 (bit)           有效数字          绝对值范围
    float            32                6~7            10^(-37) ~ 10^38
    double          64                15~16          10^(-307) ~10^308
    long double   128               18~19          10^(-4931) ~ 10 ^ 4932
  1. #include<iostream>
  2. #include<math.h>
  3. using namespace std;
  4.  
  5. int main()
  6. {
  7. double n,p;
  8. while(cin>>n>>p)
  9. cout<<pow(p,1.0/n)<<endl;
  10. return ;
  11. }

Power of Cryptography - poj 2109的更多相关文章

  1. 贪心 POJ 2109 Power of Cryptography

    题目地址:http://poj.org/problem?id=2109 /* 题意:k ^ n = p,求k 1. double + pow:因为double装得下p,k = pow (p, 1 / ...

  2. Poj 2109 / OpenJudge 2109 Power of Cryptography

    1.Link: http://poj.org/problem?id=2109 http://bailian.openjudge.cn/practice/2109/ 2.Content: Power o ...

  3. poj 2109 Power of Cryptography

    点击打开链接 Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16388   Ac ...

  4. POJ 2109 :Power of Cryptography

    Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 18258   Accepted: ...

  5. POJ 2109 -- Power of Cryptography

    Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 26622   Accepted: ...

  6. POJ 2109 Power of Cryptography 数学题 double和float精度和范围

    Power of Cryptography Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 21354 Accepted: 107 ...

  7. Power of Cryptography(用double的泰勒公式可行分析)

    Power of Cryptography Time limit: 3.000 seconds http://uva.onlinejudge.org/index.php?option=com_onli ...

  8. [POJ2109]Power of Cryptography

    [POJ2109]Power of Cryptography 试题描述 Current work in cryptography involves (among other things) large ...

  9. UVA 113 Power of Cryptography (数学)

    Power of Cryptography  Background Current work in cryptography involves (among other things) large p ...

随机推荐

  1. JAVA基础加强(张孝祥)_类加载器、分析代理类的作用与原理及AOP概念、分析JVM动态生成的类、实现类似Spring的可配置的AOP框架

    1.类加载器 ·简要介绍什么是类加载器,和类加载器的作用 ·Java虚拟机中可以安装多个类加载器,系统默认三个主要类加载器,每个类负责加载特定位置的类:BootStrap,ExtClassLoader ...

  2. Jenkins配置Java项目1(Java+Maven+Tomcat+SVN/Git)

    先收集几个网址,后续再自己动手过一遍 http://www.cnblogs.com/leefreeman/p/4211530.html http://www.cnblogs.com/sunzhench ...

  3. delphi crc校验函数

    function CalCRC16(AData: array of Byte; AStart, AEnd: Integer): string;const  GENP=$8408;  //多项式公式X1 ...

  4. TQ2440平台上LCD驱动的移植

    参考: http://liu1227787871.blog.163.com/blog/static/205363197201242393031250/ http://blog.csdn.net/cum ...

  5. squid 三种代理实验

    squid 软件既可以做代理,也可以做实现缓存加速,大大降低服务器的I/O.. 1.其中squid代理分为三种,正向代理.透明代理.反向代理. (1)squid正向代理和squid透明代理都位客户端: ...

  6. 常见java异常

    1. java.lang.NullPointerException(空指针异常)  调用了未经初始化的对象或者是不存在的对象 经常出现在创建图片,调用数组这些操作中,比如图片未经初始化,或者图片创建时 ...

  7. Git的微操作

    合并分支代码,简单操作: 1.切换到master主干代码 2.到git repositories 视图,点击需要合并的分支,例如v1.1.9 点击merge 进行合并 3.然后push to Upst ...

  8. ecshop_商品描述远程图片自动本地化插件

    解压缩文件,覆盖 ecshop 的 \includes\fckeditor文件夹. 这样在后台添加商品的商品详细描述,编辑器最后一个按钮就是自动下载 远程图片到你的网站空间,这样可防止对方网站图片失效 ...

  9. MySql中文乱码问题(3)

    MySql的client是在dos界面上,然而dos界面默认的字符集编码方式是:GBK (1).MySql字符转换原理图 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi ...

  10. Linux下xargs命令详解及xargs与管道的区别

    在工作中经常会接触到xargs命令,特别是在别人写的脚本里面也经常会遇到,但是却很容易与管道搞混淆,本篇会详细讲解到底什么是xargs命令,为什么要用xargs命令以及与管道的区别.为什么要用xarg ...