Description

Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance. 
It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights. 
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.

Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device. 
It is guaranteed that will exist at least one solution for each test case at the evaluation. 

Input

The input has the following structure: 
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20); 
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: '-' for the left arm and '+' for the right arm); 
• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights' values. 

Output

The output contains the number M representing the number of possibilities to poise the balance.

Sample Input

2 4
-2 3
3 4 5 8

Sample Output

2

题意:用所有的砝码挂在天平的挂钩上,使天平平衡的挂法有多少种。
dp[i][j], 表示挂前i个砝码使其平衡系数(力矩和)为j的挂法, i∈[0,20], 当全部挂在最右端时, j = 15*20*25 = 7500, 最左端时-7500
为使其有意义,所以把j取值为[0, 7500*2], 7500时为平衡点
状态转移方程:dp[i][ j + w[i]*dis[k] ] += dp[i-1][j] k∈[1, c]
#include <iostream>
#include <stdio.h>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxf = *;
int c, g;
int dis[];
int w[];
int dp[][maxf]; int main()
{
//freopen("1.txt", "r", stdin);
cin >> c >> g;
for (int i = ; i <= c; i++)
cin >> dis[i];
for (int i = ; i <= g; i++)
cin >> w[i]; memset(dp, , sizeof(dp));
dp[][] = ;
for (int i = ; i <= g; i++) {
for (int j = ; j <= maxf; j++) {
if (dp[i-][j]) {
for (int k = ; k <= c; k++) {
dp[i][j + w[i]*dis[k]] += dp[i-][j];
}
}
}
}
printf("%d\n", dp[g][]); return ;
}
 

[poj 1837] Balance dp的更多相关文章

  1. POJ 1837 -- Balance(DP)

     POJ 1837 -- Balance 转载:優YoU   http://user.qzone.qq.com/289065406/blog/1299341345 提示:动态规划,01背包 初看此题第 ...

  2. poj 1837 Balance(背包)

    题目链接:http://poj.org/problem?id=1837 Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  3. POJ 1837 Balance 01背包

    题目: http://poj.org/problem?id=1837 感觉dp的题目都很难做,这道题如果不看题解不知道憋到毕业能不能做出来,转化成了01背包问题,很神奇.. #include < ...

  4. POJ 1837 Balance 水题, DP 难度:0

    题目 http://poj.org/problem?id=1837 题意 单组数据,有一根杠杆,有R个钩子,其位置hi为整数且属于[-15,15],有C个重物,其质量wi为整数且属于[1,25],重物 ...

  5. POJ 1837 Balance(01背包变形, 枚举DP)

    Q: dp 数组应该怎么设置? A: dp[i][j] 表示前 i 件物品放入天平后形成平衡度为 j 的方案数 题意: 有一个天平, 天平的两侧可以挂上重物, 给定 C 个钩子和G个秤砣. 2 4 - ...

  6. POJ 1837 Balance 【DP】

    题意:给出一个天平,给出c个钩子,及c个钩子的位置pos[i],给出g个砝码,g个砝码的质量w[i],问当挂上所有的砝码的时候,使得天平平衡的方案数, 用dp[i][j]表示挂了前i个砝码时,平衡点为 ...

  7. POJ 1837 Balance

    Balance Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9240 Accepted: 5670 Description G ...

  8. poj 1837 Balance (0 1 背包)

    Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10326   Accepted: 6393 题意:给你n个挂 ...

  9. poj 1837 Balance 动态规划 (经典好题,很锻炼思维)

    题目大意:给你一个天平,并给出m个刻度,n个砝码,刻度的绝对值代表距离平衡点的位置,并给出每个砝码的重量.达到平衡状态的方法有几种. 题目思路:首先我们先要明确dp数组的作用,dp[i][j]中,i为 ...

随机推荐

  1. httpRequest.CookieContainer= cookie 与 httpRequest.Headers.Add("Cookie", cookie)

    这两天做了一个获取cookie并且携带此cookie去请求另外一个url地址,中间携带cookie用了两种方式:1. httpRequest.CookieContainer= cookie (此coo ...

  2. 9 python 数据类型—字典

    字典是python中唯一的映射类型,采用键值对(key-value)的形式存储数据.python对key进行哈希函数运算,根据计算的结果决定value的存储地址,所以字典是无序存储的,且key必须是可 ...

  3. js string.format 方法

    String.prototype.format = function(args) { var result = this; if (arguments.length > 0) { if (arg ...

  4. hdu1556Color the ball线段树区间更新

    题目链接 线段树区间更新更新一段区间,在更新区间的过程中,区间被分成几段,每一段的左右界限刚好是一个节点的tree[node].left和tree[node].right(如果不是继续分,直到是为止) ...

  5. ACM学习历程—UESTC 1222 Sudoku(矩阵)(2015CCPC H)

    题目链接:http://acm.uestc.edu.cn/#/problem/show/1226 题目大意就是构造一个行列和每个角的2*2都是1234的4*4矩阵. 用dfs暴力搜索,不过需要每一步进 ...

  6. 训练集、测试集loss容易出现的问题总结

    train loss 不断下降,test loss不断下降:说明网络仍在学习; train loss 不断下降,test loss趋于不变:说明网络过拟合; train loss 趋于不变,test ...

  7. 记一次肉机事件--yam

    背景: 研发同事反应他自己的测试机器,有一个yum程序占用cpu很多,接近100%,然后他就将这个程序kill了.我一看他给我发的截图,原来不是“yum”,而是“yam”,第一反应就是让人当肉机了.上 ...

  8. for循环中的条件执行循序

    问题: public class Main { public static void main(String[] args) { int i,n,length = 0; for(i=1;length& ...

  9. GSM与GPRS区别介绍

    1.    GSM是全球移动通讯系统(Global System for Mobile Communications)的简称 2.    GPRS是通用分组无线业务(General Packet Ra ...

  10. 如何在windows 2003(虚拟主机)上面部署MVC3

    相信有很多朋友和我一样遇到了这个问题,网上大牛说的都不是很清楚,关于这个问题我详细的跟进一下 这个问题呢大致分为两种情况 一.有服务器的控制权限,这个就简单很多, 1.安装mvc3支持组件2.如果可以 ...