题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1695

题意: 对于 a, b, c, d, k . 有 x 属于 [a, b],  y 属于 [c, d], 求 gcd(x, y) = k 的 x, y 的对数 . 其中 a = b = 1 .

注意: (x, y), (y, x) 算一种情况 .

思路: 莫比乌斯反演

可以参考一下: http://blog.csdn.net/lixuepeng_001/article/details/50577932

公式: F(n) = sigma f(d) , 其中 (n | d) ==> f(n) = sigma u(d / n) * F(d) , 其中 (n | d) .

其中 u 为莫比乌斯函数, 定义为:

  若 d = 1, 则 u(d) = 1;

  若 d = p1p2...pk, 则 u(d) = (-1)^k , 其中 pi 为互异质数;

  其他 u(d) = 0;

对于 gcd(x, y) = k, 显然有 gcd(x / k, y / k) = 1 . 那么原题等价于求 gcd(x, y) = 1, 其中 x 属于 (1, b / k), y 属于 (1, d / k) .

然后定义 f(n) 表示满足条件的 gcd(x,y) = n 的 (x, y) 对数,

再定义 F(n) 表示满足 n | gcd(x,y) 的 (x, y) 对数, 即 gcd(x, y) % n = 0 的x, y对数 .

那么我们要求的就是 f(1) .

通过前面推理不难发现 F(x) = n / x * m / x, 其中 n = b / k, m = d / k;

那么 f(1) = sigma u(d / 1) * F(d), 其中 1 | d 且 d <= min(n, m);

即 f(1) = sigma u(d) * (n / d) * (m / d);

关于去重: f'(1) = sigma u(d) * (n / d) * (n / d), 其中 n 为 m, n中的最小值, 则 sol = f(1) - f'(1) / 2;

代码:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define ll long long
using namespace std; const int MAXN = 1e6 + ; bool check[MAXN];
int mu[MAXN], prime[MAXN]; void Moblus(void){
memset(check, false, sizeof(check));
int tot = ;
mu[] = ;
for(int i = ; i < MAXN; i++){
if(!check[i]){
prime[tot++] = i;
mu[i] = -;
}
for(int j = ; j < tot && i * prime[j] < MAXN; j++){
check[i * prime[j]] = true;
if(i % prime[j] == ){
mu[i * prime[j]] = ;
break;
}else mu[i * prime[j]] = -mu[i];
}
}
} int main(void){
int t, a, b, c, d, k;
Moblus();
scanf("%d", &t);
for(int i = ; i <= t; i++){
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
if(k == ){
printf("Case %d: 0\n", i);
continue;
}
if(b > d) swap(b, d);
b /= k;
d /= k;
ll ans1 = , ans2 = ;
for(int j = ; j <= b; j++){
ans1 += (ll)mu[j] * (b / j) * (d / j);
}
for(int j = ; j <= b; j++){
ans2 += (ll)mu[j] * (b / j) * (b / j);
}
printf("Case %d: %lld\n",i, ans1 - (ans2 >> ));
}
return ;
}

因为对于某些连续的 i 会有 b / i, d / i 是相同的, 这种情况可以通过前缀和优化一下 .

优化代码:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define ll long long
using namespace std; const int MAXN = 1e5 + ; bool check[MAXN];
int prime[MAXN], mu[MAXN], sum[MAXN]; void Moblus(void){
memset(check, false, sizeof(check));
int tot = ;
mu[] = ;
sum[] = ;
for(int i = ; i < MAXN; i++){
if(!check[i]){
prime[tot++] = i;
mu[i] = -;
}
for(int j = ; j < tot && prime[j] * i < MAXN; j++){
check[i * prime[j]] = true;
if(i % prime[j] == ){
mu[i * prime[j]] = ;
break;
}else mu[i * prime[j]] = -mu[i];
}
sum[i] = sum[i - ] + mu[i];
}
} ll solve(int b, int d){
ll ans = ;
for(int i = , la = ; i <= b; i = la + ){
la = min(b / (b / i), d / (d / i));
ans += (ll)(sum[la] - sum[i - ]) * (b / i) * (d / i);
}
return ans;
} int main(void){
Moblus();
int t, a, b, c, d, k;
scanf("%d", &t);
for(int i = ; i <= t; i++){
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
if(k == ){
printf("Case %d: 0\n", i);
continue;
}
b /= k;
d /= k;
if(b > d) swap(b, d);
ll ans1 = solve(b, d);
ll ans2 = solve(b, b);
printf("Case %d: %lld\n", i, ans1 - (ans2 >> ));
}
return ;
}

就本题而言时间从 31ms 优化到了 15 ms .

hdu1695(莫比乌斯反演模板)的更多相关文章

  1. hdu1695莫比乌斯反演模板题

    hdu1695 求1<=i<=n&&1<=j<=m,gcd(i,j)=k的(i,j)的对数 最后的结果f(k)=Σ(1<=x<=n/k)mu[x]* ...

  2. hdu1695 莫比乌斯反演

    莫比乌斯反演:可参考论文:<POI XIV Stage.1 <Queries>解题报告By Kwc-Oliver> 求莫比乌斯函数mu[i]:(kuangbin模板) http ...

  3. hdu1695(莫比乌斯反演+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目是求 在区间[a,b]选一个数x,区间[c,d]选一个数y,求满足gcd(x,y) = k ...

  4. HDU-1695 莫比乌斯反演

    这里学习一下莫比乌斯反演 翻看了很多书,发现莫比乌斯反演,准确来说不是一种固有的公式,而是一种法则. 我们定义F(n),为f(d)的和函数,而定义f(n)为某儿算术函数. 反演公式1:反演n的因子时 ...

  5. HDU 1695 GCD (莫比乌斯反演模板)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  6. BZOJ 2440 完全平方数 莫比乌斯反演模板题

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2440 题目大意: 求第k个无平方因子的数 思路: 二分答案x,求1-x中有多少个平方因 ...

  7. 【HDU1695】GCD(莫比乌斯反演)

    [HDU1695]GCD(莫比乌斯反演) 题面 题目大意 求\(a<=x<=b,c<=y<=d\) 且\(gcd(x,y)=k\)的无序数对的个数 其中,你可以假定\(a=c= ...

  8. hdu1695(容斥 or 莫比乌斯反演)

    刚开始看题,想了一会想到了一种容斥的做法.复杂度O( n(3/2) )但是因为题目上说有3000组测试数据,然后吓尿.完全不敢写. 然后想别的方法. 唉,最近精神有点问题,昨天从打完bc开始想到1点多 ...

  9. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

随机推荐

  1. java:maven中webapp下的jsp不能访问web-inf下面的bean

    java:maven中webapp下的jsp不能访问web-inf下面的bean 当然 WEB-INF下面的文件是不能访问的,只能吧jsp文件放入到WEB-INF下面,然后通过配置WEB-INF下we ...

  2. 【python】关于函数递归使用 return 后,收到数据为 None。

    在写一个辗转相除求最小公因数的程序的时候,突然发现自己不管怎么写(除了两数恰巧可以整除),return 返回的值恒为 none. 代码为此: def gcd(a,b): if a%b==0: retu ...

  3. Linux-NoSQL之Redis(三)

    一.Redis数据常用操作 1.string常用操作 set key1  aminglinux get key1 set key1  aming //一个key对应一个value,多次赋值,会覆盖前面 ...

  4. Java进阶07 嵌套类

    到现在为止,我们都是在Java文件中直接定义类.这样的类出现在包(package)的级别上.Java允许类的嵌套定义. 这里将讲解如何在一个类中嵌套定义另一个类. 嵌套 内部类 Java允许我们在类的 ...

  5. AtCoder Grand Contest 015 题解

    A - A+...+B Problem 常识 Problem Statement Snuke has N integers. Among them, the smallest is A, and th ...

  6. noip寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  7. 孤独地、凄惨地AK

    一个\(OIer\)要写多少\(for\) 才能被称为一个\(OIer\) 一位巨佬要爆过多少次零 才能在省选逆袭 手指要多少次掠过键盘 才能安心地休息 \(OI\)啊 我的朋友 在风中\(AK\) ...

  8. MySQL Explain详解(转)

    explain SELECT a.* FROM test a,(select id from test where level_id <=4 order by aa_id limit 24300 ...

  9. loadrunner手动生成脚本函数

    1.点击insert

  10. 查看,修改,上传monmap命令

    标签(空格分隔): ceph,ceph运维,monmap 查看集群monmap命令 从集群获取monmap: # ceph mon getmap -o monmap 查看上一步下载的monmap: # ...