题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407

推导如这里:https://www.cnblogs.com/clrs97/p/5191506.html

然后发现 \( F(D) \) 是一个积性函数,可以筛质数的同时筛出来;

首先,单个质数 \( p \) 时只有 \( d=1 \) 和 \( d=p \) 两个因数,所以 \( F[p] = p^{k} - 1 \)

然后如果筛到互质的数,直接把 \( F() \) 相乘即可;

如果不互质,说明那个数已经有 \( p \) 这个质因子,考虑会在什么地方出现;

观察那个 \( \mu(d) \) 里面的 \( d \),不会有两个及以上相同的质因子,所以新加入的这个 \( p \) 不会在 \( d \) 中单独出现了;

所以所有的 \( \mu(d) \) 外面那个 \( (\frac{D}{d})^{k} \) 里面都会加入一个 \( p^{k} \),拿出来单独乘上即可;

注意分块的边界是 \( min(n,m) \),因为枚举的是 \( gcd \) ;

因为有负数,最后别忘了再模一下。

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=5e6+,mod=1e9+;
int n,m,k,pri[xn],cnt,f[xn],s[xn];
bool vis[xn];
ll pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void init()
{
int mx=5e6; f[]=;
for(int i=;i<=mx;i++)
{
if(!vis[i])pri[++cnt]=i,s[i]=pw(i,k),f[i]=upt(s[i]-);
for(int j=;j<=cnt&&(ll)i*pri[j]<=mx;j++)
{
vis[i*pri[j]]=;
if(i%pri[j])f[i*pri[j]]=(ll)f[i]*f[pri[j]]%mod;
else {f[i*pri[j]]=(ll)f[i]*s[pri[j]]%mod; break;}
}
}
for(int i=;i<=mx;i++)f[i]=upt(f[i]+f[i-]);
}
int main()
{
int T; scanf("%d%d",&T,&k); init();
while(T--)
{
scanf("%d%d",&n,&m); int mn=min(n,m),ans=;//
for(int i=,j;i<=mn;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans=(ans+((ll)f[j]-f[i-])*(n/i)%mod*(m/i))%mod;
}
printf("%d\n",upt(ans));//-
}
return ;
}

bzoj 4407 于神之怒加强版 —— 反演+筛积性函数的更多相关文章

  1. bzoj 4407 于神之怒加强版——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407 \( ans = \sum\limits_{D=1}^{min(n,m)}\frac{ ...

  2. Divisor counting [线性筛积性函数]

    Divisor counting 题目大意:定义f(n)表示整数n的约数个数.给出正整数n,求f(1)+f(2)+...+f(n)的值. 注释:1<=n<=1000,000 想法:我们再次 ...

  3. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  4. BZOJ.4407.于神之怒加强版(莫比乌斯反演)

    题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...

  5. ●BZOJ 4407 于神之怒加强版

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题解: 莫比乌斯反演 直接套路化式子 $\begin{align*}ANS&= ...

  6. P6222 「简单题」加强版 莫比乌斯反演 线性筛积性函数

    LINK:简单题 以前写过弱化版的 不过那个实现过于垃圾 少预处理了一个东西. 这里写一个实现比较精细了. 最后可推出式子:\(\sum_{T=1}^nsum(\frac{n}{T})\sum_{x| ...

  7. Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和

    下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...

  8. bzoj 2693: jzptab 线性筛积性函数

    2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 444  Solved: 174[Submit][Status][Discus ...

  9. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

随机推荐

  1. Swift学习 --- 2.1基础部分

    1.swift 能够省去; 2.println与print的差别就是一个能够换行一个不能够 3.swift省去了.h与.m 直接一个swift文件 4.元组能够返回多个值,元组(tuples)把多个值 ...

  2. Computer Vision: Algorithms and ApplicationsのImage processing

    实在是太喜欢Richard Szeliski的这本书了.每一章节(after chapter3)都详述了该研究方向比較新的成果.还有很多很多的reference,假设你感兴趣.全然能够看那些參考论文 ...

  3. memset使用

    void memset(void s, int ch, size_t n); 函数解释:将s中当前位置后面的n个字节 (typedef unsigned int size_t )用 ch 替换并返回 ...

  4. C#使用SQL语句时候的万用密码问题

    实际上万用密码就是因为SQL里面的语句--是注释,利用bug添加用户名和密码. 例如,用户名为 adada’ or 1=1-- 第一个种写法登录成功了 第二种写法登录失败(正确) 第三种写法登录失败( ...

  5. 使用 Apache poi 导入Excel

    本文主要记录Excel导入及模板下载,遇到的问题及注意事项. 第一节:Excel导入   1.如何获取Excel中的最大行,也就是最后一行? 2.如何获取有效行?有效行的定义是每一行记录中每一列中值都 ...

  6. Vim 标签定义

    一.单个文件: m+标记字符 打上标记,如在开头行按ms(start),标记开头: 如需返回到自己的标记点,按`+标记字符就行: 二.多个文件: m+大写标记字符 如果删除了标签的行,同时也删除了标签 ...

  7. 《机器学习实战》学习笔记第十四章 —— 利用SVD简化数据

    相关博客: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) <机器学习实战>学习笔记第十三章 —— 利用PCA来简化数据 奇异值分解(SVD)原理与在降维中的应用 机器学习( ...

  8. EntityFramework 学习 一 Delete Entity using DBContext in Disconnected Scenario

    Student studentToDelete; . Get student from DB using (var ctx = new SchoolDBEntities()) { studentToD ...

  9. spring学习(2)

    理解反向控制(IOC) 依赖注入(di):比IOC更好地名字.获得依赖对象的方式反转了. IOC应用 IOC或者di,还可以达到解耦的目的. spring开发提倡接口编程,配合di技术,可以更好地达到 ...

  10. 分享知识-快乐自己:zookeeper 伪集群搭建

    1):单一 zookeeper  搭建步骤 2):zookeeper 伪集群搭建 1):新建一个集群目录 [root@zoodubbo opt]# mkdir zookeeper_cluster 2) ...