BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)
题意
Sol
很显然的一个dp方程
\(f_i = min(f_j + (sum_i - sum_j - 1 - L)^P)\)
其中\(sum_i = \sum_{j = 1}^i len_j + 1\)
这个东西显然是有决策单调性的。
单调队列优化一下
我好像已经做过三个这种类型的题了,而且转移的时候\(w\)中总是带个幂函数。。interesting
#include<bits/stdc++.h>
#define chmax(a, b) (a = (a > b ? a : b))
#define chmin(a, b) (a = (a < b ? a : b))
#define LL long long
#define LDB long double
//#define int long long
using namespace std;
const int MAXN = 1e5 + 10;
inline int read() {
int x = 0, f = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int T, N, L, P, sum[MAXN], q[MAXN], c[MAXN], pre[MAXN];//c???ߵ?λ?
char str[MAXN][35];
LDB f[MAXN];
LDB fastpow(LDB a, int p) {
LDB base = 1;
while(p) {
if(p & 1) base = base * a;
a = a * a; p >>= 1;
}
return base;
}
LDB calc(int j, int i) {
return f[j] + fastpow(abs(sum[i] - sum[j] - L), P);
}
int lower(int x, int y) {//???x????????
int l = x, r = N + 1, ans = 0;
while(l <= r) {
int mid = l + r >> 1;
if(calc(x, mid) >= calc(y, mid)) r = mid - 1;
else l = mid + 1;
}
return l;
}
void solve() {
N = read(); L = read() + 1; P = read();
for(int i = 1; i <= N; i++) {
scanf("%s", str[i] + 1);
sum[i] = sum[i - 1] + strlen(str[i] + 1) + 1;
}
memset(q, 0, sizeof(q));
for(int i = 1, h = 2, t = 2; i <= N; i++) {
while(h < t && c[h] <= i) h++;
f[i] = calc(q[h], i); pre[i] = q[h];
while(h < t && c[t - 1] >= lower(q[t], i)) t--;
c[t] = lower(q[t], i); q[++t] = i;
}
if(f[N] > 1e18) {puts("Too hard to arrange\n--------------------"); return;}
printf("%.0Lf\n", f[N]);
puts("--------------------");
}
main() {
for(T = read(); T; T--) solve();
}
BZOJ1563: [NOI2009]诗人小G(决策单调性 前缀和 dp)的更多相关文章
- bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)
目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...
- [BZOJ1563][NOI2009]诗人小G(决策单调性优化DP)
模板题. 每个决策点都有一个作用区间,后来的决策点可能会比先前的优.于是对于每个决策点二分到它会比谁在什么时候更优,得到新的决策点集合与区间. #include<cstdio> #incl ...
- BZOJ1563:[NOI2009]诗人小G(决策单调性DP)
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
- [NOI2009]诗人小G 决策单调性优化DP
第一次写这种二分来优化决策单调性的问题.... 调了好久,,,各种细节问题 显然有DP方程: $f[i]=min(f[j] + qpow(abs(sum[i] - sum[j] - L - 1))); ...
- P1912 [NOI2009]诗人小G[决策单调性优化]
地址 n个数划分若干段,给定$L$,$p$,每段代价为$|sum_i-sum_j-1-L|^p$,求总代价最小. 正常的dp决策单调性优化题目.不知道为什么luogu给了个黑题难度.$f[i]$表示最 ...
- BZOJ_1563_[NOI2009]诗人小G_决策单调性
BZOJ_1563_[NOI2009]诗人小G_决策单调性 Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超 ...
- [BZOJ 1563] [NOI 2009] 诗人小G(决策单调性)
[BZOJ 1563] [NOI 2009] 诗人小G(决策单调性) 题面 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的.小 G ...
- BZOJ1563 NOI2009诗人小G(动态规划+决策单调性)
设f[i]为前i行的最小不协调度,转移枚举这一行从哪开始,显然有f[i]=min{f[j]+abs(s[i]-s[j]+i-j-1-m)p}.大胆猜想有决策单调性就好了.证明看起来很麻烦,从略.注意需 ...
- 2018.09.28 bzoj1563: [NOI2009]诗人小G(决策单调性优化dp)
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的 ...
随机推荐
- uoj#422. 【集训队作业2018】小Z的礼物(MIn-Max容斥+插头dp)
题面 传送门 题解 好迷-- 很明显它让我们求的是\(Max(S)\),我们用\(Min-Max\)容斥,因为\(Min(S)\)是很好求的,只要用方案数除以总方案数算出概率,再求出倒数就是期望了 然 ...
- web安全-接入层注入
web安全-接入层注入 1.关系型数据库 mysql 存放结构化数据 高效操作大量数据 方便处理数据之间的关联关系 2.SQL注入 select * from table where id=${id} ...
- sap程序下载
有时需要下载sap 中的程序 一屏一屏的拷贝非常麻烦 这里是在网上找的的一个下载工具 实际就是一个sap程序 建立好sap程序 把代码拷贝进去 在参数处输入程序名字 和下载位置 F8运 ...
- P1969 积木大赛
题意:给你一段序列,一次操作:[l,r]内所有数+1 初始序列全为0 现在给你最后序列,问最少操作几次能达到这样的序列 蒟蒻表示秒想到------差分啊 每次差分必有一个+1,一个-1 把差分数组求出 ...
- [USACO08MAR]跨河River Crossing dp
题目描述 Farmer John is herding his N cows (1 <= N <= 2,500) across the expanses of his farm when ...
- 18.Jewels and Stones(珠宝和石头)
Level: Easy 题目描述: You're given strings J representing the types of stones that are jewels, and Sre ...
- docker的常用操作
查看所有的镜像: docker images 查看所有的容器: docker ps -a 查看正在运行的容器: docker ps 移除容器: docker rm -f 容器id 移除镜像: dock ...
- react 中文文档案例一 (倒计时)
1.函数试组件 import React from 'react'; import ReactDOM from 'react-dom'; function Clock(props){ return( ...
- 【笔记】如何在for语句中迭代多个可迭代对象
并行=>使用内置函数zip,它能将多个可迭代对象合并,每次迭代返回一个元组. for i,j,k in zip(a,b,c): TODO 穿行=>使用标准库中的itertools.chai ...
- POJ 3734 Blocks(矩阵快速幂+矩阵递推式)
题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 . 设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...