YUV格式有两大类:planar和packed。
对于planar的YUV格式,先连续存储所有像素点的Y,紧接着存储所有像素点的U,随后是所有像素点的V。
对于packed的YUV格式,每个像素点的Y,U,V是连续交*存储的。

YUV,分为三个分量,“Y”表示明亮度(Luminance或Luma),也就是灰度值;而“U”和“V” 表示的则是色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。

与我们熟知的RGB类似,YUV也是一种颜色编码方法,主要用于电视系统以及模拟视频领域,它将亮度信息(Y)与色彩信息(UV)分离,没有UV信息一样
可以显示完整的图像,只不过是黑白的,这样的设计很好地解决了彩色电视机与黑白电视的兼容问题。并且,YUV不像RGB那样要求三个独立的视频信号同时传
输,所以用YUV方式传送占用极少的频宽。

YUV码流的存储格式其实与其采样的方式密切相关,主流的采样方式有三种,YUV4:4:4,YUV4:2:2,YUV4:2:0,关于其详细原理,可以通过网上其它文章了解,这里我想强调的是如何根据其采样格式来从码流中还原每个像素点的YUV值,因为只有正确地还原了每个像素点的YUV值,才能通过YUV与RGB的转换公式提取出每个像素点的RGB值,然后显示出来。

用三个图来直观地表示采集的方式吧,以黑点表示采样该像素点的Y分量,以空心圆圈表示采用该像素点的UV分量。

先记住下面这段话,以后提取每个像素的YUV分量会用到。

  1. YUV 4:4:4采样,每一个Y对应一组UV分量。
  2. YUV 4:2:2采样,每两个Y共用一组UV分量。
  3. YUV 4:2:0采样,每四个Y共用一组UV分量。

2.  存储方式

下面我用图的形式给出常见的YUV码流的存储方式,并在存储方式后面附有取样每个像素点的YUV数据的方法,其中,Cb、Cr的含义等同于U、V。

(1) YUVY 格式 (属于YUV422)

 
YUYV为YUV422采样的存储格式中的一种,相邻的两个Y共用其相邻的两个Cb、Cr,分析,对于像素点Y'00、Y'01 而言,其Cb、Cr的值均为 Cb00、Cr00,其他的像素点的YUV取值依次类推。

(2) UYVY 格式 (属于YUV422)
UYVY格式也是YUV422采样的存储格式中的一种,只不过与YUYV不同的是UV的排列顺序不一样而已,还原其每个像素点的YUV值的方法与上面一样。
 
(3) YUV422P(属于YUV422)
YUV422P
也属于YUV422的一种,它是一种Plane模式,即平面模式,并不是将YUV数据交错存储,而是先存放所有的Y分量,然后存储所有的U(Cb)分量,
最后存储所有的V(Cr)分量,如上图所示。其每一个像素点的YUV值提取方法也是遵循YUV422格式的最基本提取方法,即两个Y共用一个UV。比如,
对于像素点Y'00、Y'01 而言,其Cb、Cr的值均为 Cb00、Cr00。
(4)YV12,YU12格式(属于YUV420)

YU12
和YV12属于YUV420格式,也是一种Plane模式,将Y、U、V分量分别打包,依次存储。其每一个像素点的YUV数据提取遵循YUV420格式的
提取方式,即4个Y分量共用一组UV。注意,上图中,Y'00、Y'01、Y'10、Y'11共用Cr00、Cb00,其他依次类推。

(5)NV12、NV21(属于YUV420)

NV12和NV21属于YUV420格式,是一种two-plane模式,即Y和UV分为两个Plane,但是UV(CbCr)为交错存储,而不是分为三个plane。其提取方式与上一种类似,即Y'00、Y'01、Y'10、Y'11共用Cr00、Cb00

YUV420 planar数据, 以720×488大小图象YUV420 planar为例,

其存储格式是: 共大小为(720×480×3>>1)字节,

分为三个部分:Y,U和V

Y分量:    (720×480)个字节

U(Cb)分量:(720×480>>2)个字节

V(Cr)分量:(720×480>>2)个字节

三个部分内部均是行优先存储,三个部分之间是Y,U,V 顺序存储。

即YUV数据的0--720×480字节是Y分量值,

720×480--720×480×5/4字节是U分量

720×480×5/4 --720×480×3/2字节是V分量。

4 :2: 2 和4:2:0 转换:

最简单的方式:

YUV4:2:2 ---> YUV4:2:0  Y不变,将U和V信号值在行(垂直方向)在进行一次隔行抽样。 YUV4:2:0 ---> YUV4:2:2  Y不变,将U和V信号值的每一行分别拷贝一份形成连续两行数据。

在YUV420中,一个像素点对
应一个Y,一个4X4的小方块对应一个U和V。对于所有YUV420图像,它们的Y值排列是完全相同的,因为只有Y的图像就是灰度图像。YUV420sp
与YUV420p的数据格式它们的UV排列在原理上是完全不同的。420p它是先把U存放完后,再存放V,也就是说UV它们是连续的。而420sp它是
UV、UV这样交替存放的。(见下图) 有了上面的理论,我就可以准确的计算出一个YUV420在内存中存放的大小。
width * hight =Y(总和) U = Y / 4   V = Y / 4

所以YUV420 数据在内存中的长度是 width * hight * 3 / 2,

假设一个分辨率为8X4的YUV图像,它们的格式如下图:

YUV420sp格式如下图                                                          

YUV420p数据格式如下图

旋转90度的算法:

public static void rotateYUV240SP(byte[] src,byte[] des,int width,int height)
 {
   
  int wh = width * height;
  //旋转Y
  int k = 0;
  for(int i=0;i<width;i++) {
   for(int j=0;j<height;j++)
   {
               des[k] = src[width*j + i];   
         k++;
   }
  }
  
  for(int i=0;i<width;i+=2) {
   for(int j=0;j<height/2;j++)
   { 
               des[k] = src[wh+ width*j + i]; 
               des[k+1]=src[wh + width*j + i+1];
         k+=2;
   }
  }
  
  
 }

YV12和I420的区别      
 一般来说,直接采集到的视频数据是RGB24的格式,RGB24一帧的大小size=width×heigth×3
Bit,RGB32的size=width×heigth×4,如果是I420(即YUV标准格式4:2:0)的数据量是
size=width×heigth×1.5 Bit。      
在采集到RGB24数据后,需要对这个格式的数据进行第一次压缩。即将图像的颜色空间由RGB2YUV。因为,X264在进行编码的时候需要标准的
YUV(4:2:0)。但是这里需要注意的是,虽然YV12也是(4:2:0),但是YV12和I420的却是不同的,在存储空间上面有些区别。如下:
YV12 : 亮度(行×列) + U(行×列/4) + V(行×列/4)

I420 : 亮度(行×列) + V(行×列/4) + U(行×列/4)

可以看出,YV12和I420基本上是一样的,就是UV的顺序不同。


续我们的话题,经过第一次数据压缩后RGB24->YUV(I420)。这样,数据量将减少一半,为什么呢?呵呵,这个就太基础了,我就不多写了。
同样,如果是RGB24->YUV(YV12),也是减少一半。但是,虽然都是一半,如果是YV12的话效果就有很大损失。然后,经过X264编码
后,数据量将大大减少。将编码后的数据打包,通过RTP实时传送。到达目的地后,将数据取出,进行解码。完成解码后,数据仍然是YUV格式的,所以,还需
要一次转换,这样windows的驱动才可以处理,就是YUV2RGB24。

YUY2 
是 4:2:2  [Y0 U0 Y1 V0]

yuv420p 和 YUV420的区别 在存储格式上有区别
yuv420p:yyyyyyyy uuuuuuuu vvvvv yuv420: yuv yuv yuv

YUV420P,Y,U,V三个分量都是平面格式,分为I420和YV12。I420格式和YV12格式的不同处在U平面和V平面的位置不同。在I420格式中,U平面紧跟在Y平面之后,然后才是V平面(即:YUV);但YV12则是相反(即:YVU)。
YUV420SP, Y分量平面格式,UV打包格式, 即NV12。 NV12与NV21类似,U 和 V 交错排列,不同在于UV顺序。
I420: YYYYYYYY UU VV    =>YUV420P
YV12: YYYYYYYY VV UU    =>YUV420P
NV12: YYYYYYYY UVUV     =>YUV420SP
NV21: YYYYYYYY VUVU     =>YUV420SP

YUV是指亮度参量和色度参量分开表示的像素格式,而这样分开的好处就是不但可以避免相互干扰,还可以降低色度的采样率而不会对图像质量影响太大。YUV是一个比较笼统地说法,针对它的具体排列方式,可以分为很多种具体的格式。

YUV格式解析1(播放器——project2)

根据板卡api设计实现yuv420格式的视频播放器
打开*.mp4;*.264类型的文件,实现其播放。
使用的视频格式是YUV420格式
YUV格式通常有两大类:打包(packed)格式和平面(planar)格式。
前者将YUV分量存放在同一个数组中,通常是几个相邻的像素组成一个宏像素(macro-pixel);而后者使用三个数组分开存放YUV三个分量,就像
是一个三维平面一样。表2.3中的YUY2到Y211都是打包格式,而IF09到YVU9都是平面格式。(注意:在介绍各种具体格式时,YUV各分量都会
带有下标,如Y0、U0、V0表示第一个像素的YUV分量,Y1、U1、V1表示第二个像素的YUV分量,以此类推。)
MEDIASUBTYPE_YUY2 YUY2格式,以4:2:2方式打包
MEDIASUBTYPE_YUYV YUYV格式(实际格式与YUY2相同)
MEDIASUBTYPE_YVYU YVYU格式,以4:2:2方式打包
MEDIASUBTYPE_UYVY UYVY格式,以4:2:2方式打包
MEDIASUBTYPE_AYUV 带Alpha通道的4:4:4 YUV格式
MEDIASUBTYPE_Y41P Y41P格式,以4:1:1方式打包
MEDIASUBTYPE_Y411 Y411格式(实际格式与Y41P相同)
MEDIASUBTYPE_Y211 Y211格式
MEDIASUBTYPE_IF09 IF09格式
MEDIASUBTYPE_IYUV IYUV格式
MEDIASUBTYPE_YV12 YV12格式
MEDIASUBTYPE_YVU9 YVU9格式
               表2.3

YUV 采样

YUV 的优点之一是,色度频道的采样率可比 Y 频道低,同时不会明显降低视觉质量。有一种表示法可用来描述 U 和 V 与 Y 的采样频率比例,这个表示法称为 A:B:C 表示法:

?

4:4:4 表示色度频道没有下采样。

?

4:2:2 表示 2:1 的水平下采样,没有垂直下采样。对于每两个 U 样例或 V 样例,每个扫描行都包含四个 Y 样例。

?

4:2:0 表示 2:1 的水平下采样,2:1 的垂直下采样。

?

4:1:1 表示 4:1 的水平下采样,没有垂直下采样。对于每个 U 样例或 V 样例,每个扫描行都包含四个 Y 样例。与其他格式相比,4:1:1 采样不太常用,本文不对其进行详细讨论。

图 1 显示了 4:4:4 图片中使用的采样网格。灯光样例用叉来表示,色度样例则用圈表示。

4:2:2 采样的这种主要形式在 ITU-R Recommendation BT.601 中进行了定义。图 2 显示了此标准定义的采样网格。

4:2:0 采样有两种常见的变化形式。其中一种形式用于 MPEG-2
视频,另一种形式用于 MPEG-1 以及 ITU-T recommendations H.261 和 H.263。图 3 显示了 MPEG-1
方案中使用的采样网格,图 4 显示了 MPEG-2 方案中使用的采样网格。

与 MPEG-1 方案相比,在 MPEG-2 方案与为 4:2:2 和 4:4:4 格式定义的采样网格之间进行转换更简单一些。因此,在 Windows 中首选 MPEG-2 方案,应该考虑将其作为 4:2:0 格式的默认转换方案。

表面定义

本节讲述推荐用于视频呈现的 8 位 YUV 格式。这些格式可以分为几个类别:

?

4:4:4 格式,每像素 32 位

?

4:2:2 格式,每像素 16 位

?

4:2:0 格式,每像素 16 位

?

4:2:0 格式,每像素 12 位

首先,您应该理解下列概念,这样才能理解接下来的内容:

?

表面原点。对于本文讲述的 YUV 格式,原点 (0,0) 总是位于表面的左上角。

?

跨距。表面的跨距,有时也称为间距,指的是表面的宽度,以字节数表示。对于一个表面原点位于左上角的表面来说,跨距总是正数。

?

对齐。表面的对齐是根据图形显示驱动程序的不同而定的。表面始终应该 DWORD 对齐,就是说,表面中的各个行肯定都是从 32 位 (DWORD) 边界开始的。对齐可以大于 32 位,但具体取决于硬件的需求。

?

打包格式与平面格式。YUV 格式可以分为打包 格式和平面 格式。在打包格式中,Y、U 和 V 组件存储在一个数组中。像素被组织到了一些巨像素组中,巨像素组的布局取决于格式。在平面格式中,Y、U 和 V 组件作为三个单独的平面进行存储。

4:4:4 格式,每像素 32 位

推荐一个 4:4:4 格式,FOURCC 码为 AYUV。这是一个打包格式,其中每个像素都被编码为四个连续字节,其组织顺序如下所示。

标记了 A 的字节包含 alpha 的值。

4:2:2 格式,每像素 16 位

支持两个 4:2:2 格式,FOURCC 码如下:

?

YUY2

?

UYVY

两个都是打包格式,其中每个巨像素都是编码为四个连续字节的两个像素。这样会使得色度水平下采样乘以系数 2。

YUY2

在 YUY2 格式中,数据可被视为一个不带正负号的 char 值组成的数组,其中第一个字节包含第一个 Y 样例,第二个字节包含第一个 U (Cb) 样例,第三个字节包含第二个 Y 样例,第四个字节包含第一个 V (Cr) 样例,如图 6 所示。

如果该图像被看作由两个 little-endian WORD 值组成的数组,则第一个
WORD 在最低有效位 (LSB) 中包含 Y0,在最高有效位 (MSB) 中包含 U。第二个 WORD 在 LSB 中包含 Y1,在 MSB 中包含 V。

YUY2 是用于 Microsoft DirectX? Video Acceleration (DirectX VA) 的首选 4:2:2 像素格式。预期它会成为支持 4:2:2 视频的 DirectX VA 加速器的中期要求。

UYVY

此格式与 YUY2 相同,只是字节顺序是与之相反的 — 就是说,色度字节和灯光字节是翻转的(图 7)。如果该图像被看作由两个 little-endian
WORD 值组成的数组,则第一个 WORD 在 LSB 中包含 U,在 MSB 中包含 Y0,第二个
WORD 在 LSB 中包含 V,在 MSB 中包含 Y1。

4:2:0 格式,每像素 16 位

推荐两个 4:2:0 每像素 16 位格式,FOURCC 码如下:

?

IMC1

?

IMC3

两个 FOURCC 码都是平面格式。色度频道在水平方向和垂直方向上都要以系数 2 来进行再次采样。

IMC1

所有 Y 样例都会作为不带正负号的 char 值组成的数组首先显示在内存中。后面跟着所有 V (Cr) 样例,然后是所有 U (Cb) 样例。V 和 U 平面与 Y 平面具有相同的跨距,从而生成如图 8 所示的内存的未使用区域。

IMC3

此格式与 IMC1 相同,只是 U 和 V 平面进行了交换:

4:2:0 格式,每像素 12 位

推荐四个 4:2:0 每像素 12 位格式,FOURCC 码如下:

?

IMC2

?

IMC4

?

YV12

?

NV12

在所有这些格式中,色度频道在水平方向和垂直方向上都要以系数 2 来进行再次采样。

IMC2

此格式与 IMC1 相同,只是 V (Cr) 和 U (Cb)
行在半跨距边界处进行了交错。换句话说,就是色度区域中的每个完整跨距行都以一行 V 样例开始,然后是一行在下一个半跨距边界处开始的 U 样例(图
10)。此布局与 IMC1 相比,能够更加高效地利用地址空间。它的色度地址空间缩小了一半,因此整体地址空间缩小了 25%。在各个 4:2:0
格式中,IMC2 是第二首选格式,排在 NV12 之后。

IMC4

此格式与 IMC2 相同,只是 U (Cb) 和 V (Cr) 行进行了交换:

YV12

所有 Y 样例都会作为不带正负号的 char 值组成的数组首先显示在内存中。此数组后面紧接着所有 V (Cr) 样例。V 平面的跨距为 Y 平面跨距的一半,V 平面包含的行为 Y 平面包含行的一半。V 平面后面紧接着所有 U (Cb) 样例,它的跨距和行数与 V 平面相同(图 12)。

NV12

所有 Y 样例都会作为由不带正负号的 char 值组成的数组首先显示在内存中,并且行数为偶数。Y 平面后面紧接着一个由不带正负号的
char 值组成的数组,其中包含了打包的 U (Cb) 和 V (Cr) 样例,如图 13 所示。当组合的 U-V 数组被视为一个由 little-endian
WORD 值组成的数组时,LSB 包含 U 值,MSB 包含 V 值。NV12 是用于 DirectX VA 的首选 4:2:0 像素格式。预期它会成为支持 4:2:0 视频的 DirectX VA 加速器的中期要求。

YUV格式解析2

又确认了一下H264的视频格式——H264支持4:2:0的连续或隔行视频的编码和解码
YUV(亦称YCrCb)是被欧洲电视系统所采用的一种颜色编码方法(属于
PAL)。YUV主要用于优化彩色视频信号的传输,使其向后兼容老式黑白电视。与RGB视频信号传输相比,它最大的优点在于只需占用极少的带宽(RGB要
求三个独立的视频信号同时传输)。其中“Y”表示明亮度(Luminance或Luma),也就是灰阶值;而“U”和“V”表示的则是色度
(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。“亮度”是通过RGB输入信号来创建的,方法是将RGB信
号的特定部分叠加到一起。“色度”则定义了颜色的两个方面—色调与饱和度,分别用Cr和CB来表示。其中,Cr反映了GB输入信号红色部分与RGB信号亮
度值之间的差异。而CB反映的是RGB输入信号蓝色部分与RGB信号亮度值之同的差异。  
补充一下场的概念——
场的概念不是从DV才开始有的,电视系统已经有了(当然,DV和电视的关系大家都知道)归根结底还是扫描的问题,具体到PAL制式是:

每秒25帧,每帧两场,扫描线(包括电视机的电子束)自上而下先扫描一场,然后再自上而下扫描第二场
之所以引入场的概念,我的理解是主要为了在有限的带宽和成本内使画面运动更加平滑和消除闪烁感。
这两个场的扫描线是一条一条互相间隔开的,比如说对于一个帧来讲,最上面一条线编号为0,紧挨着的是1,再下来是2,3,4,5,6。。。。那么第一场也许是0,2,4,6;也许是1,3,5,7——这就是隔行扫描

在逐行扫描模式下,就是扫描线按照0,1,2,3,4,5的顺序依次扫描,很明显,这时候就不存在场的概念了。

下面区分一下YUV和YCbCr
YUV色彩模型来源于RGB模型,
该模型的特点是将亮度和色度分离开,从而适合于图像处理领域。
应用:模拟领域
Y'= 0.299*R' + 0.587*G' + 0.114*B'
U'= -0.147*R' - 0.289*G' + 0.436*B' = 0.492*(B'- Y')
V'= 0.615*R' - 0.515*G' - 0.100*B' = 0.877*(R'- Y')
R' = Y' + 1.140*V'
G' = Y' - 0.394*U' - 0.581*V'
B' = Y' + 2.032*U'
YCbCr模型来源于YUV模型。YCbCr是 YUV 颜色空间的偏移版本.
应用:数字视频,ITU-R BT.601建议
Y’ = 0.257*R' + 0.504*G' + 0.098*B' + 16
Cb' = -0.148*R' - 0.291*G' + 0.439*B' + 128
Cr' = 0.439*R' - 0.368*G' - 0.071*B' + 128
R' = 1.164*(Y’-16) + 1.596*(Cr'-128)
G' = 1.164*(Y’-16) - 0.813*(Cr'-128) - 0.392*(Cb'-128)
B' = 1.164*(Y’-16) + 2.017*(Cb'-128)
PS:
上面各个符号都带了一撇,表示该符号在原值基础上进行了伽马校正,伽马校正有助于弥补在抗锯齿的过程中,线性分配伽马值所带来的细节损失,使图像细节更加
丰富。在没有采用伽马校正的情况下,暗部细节不容易显现出来,而采用了这一图像增强技术以后,图像的层次更加明晰了。
所以说H264里面的YUV应属于YCbCr.
下面再仔细谈谈YUV格式,
YUV格式通常有两大类:打包(packed)格式和平面(planar)格式。前者将YUV分量存放在同一个数组中,通常是几个相邻的像素组成一个宏像
素(macro-pixel);而后者使用三个数组分开存放YUV三个分量,就像是一个三维平面一样。
我们常说得YUV420属于planar格式的YUV,
颜色比例如下:
Y0U0V0             Y1                 Y2U2V2                      Y3
Y4                 Y5                 Y6                          Y7
Y8U8V8             Y9                 Y10U10V10                   Y11
Y12                Y13                Y14                         Y15
其他格式YUV可以点这里查看详细内容,
而在YUV文件中YUV420又是怎么存储的呢?
在常见H264测试的YUV序列中,例如CIF图像大小的YUV序列(352*288),在文件开始并没有文件头,直接就是YUV数据,先存第一帧的Y信
息,长度为352*288个byte, 然后是第一帧U信息长度是352*288/4个byte,
最后是第一帧的V信息,长度是352*288/4个byte, 因此可以算出第一帧数据总长度是352*288*1.5,即152064个byte,
如果这个序列是300帧的话, 那么序列总长度即为152064*300=44550KB,这也就是为什么常见的300帧CIF序列总是44M的原因.
 

4:4:4采样就是说三种元素Y,Cb,Cr有同样的分辨率,这样的话,在每一个像素
点上都对这三种元素进行采样.数字4是指在水平方向上对于各种元素的采样率,比如说,每四个亮度采样点就有四个Cb的Cr采样值.4:4:4采样完整地保
留了所有的信息值.4:2:2采样中(有时记为YUY2),色度元素在纵向与亮度值有同样的分辨率,而在横向则是亮度分辨率的一半(4:2:2表示每四个
亮度值就有两个Cb和Cr采样.)4:2:2视频用来构造高品质的视频彩色信号.

在流行的4:2:0采样格式中(常记为YV12)Cb
和Cr在水平和垂直方向上有Y分辨率的一半.4:2:0有些不同,因为它并不是指在实际采样中使用4:2:0,而是在编码史中定义这种编码方法是用来区别
于4:4:4和4:2:2方法的).4:2:0采样被广泛地应用于消费应用中,比如视频会议,数字电视和DVD存储中。因为每个颜色差别元素中包含了四分
之一的Y采样元素量,那么4:2:0YCbCr视频需要刚好4:
4:4或RGB视频中采样量的一半。

4:2:0采样有时被描述是一个"每像素12位"的方法。这么说的原因可以从对四个像素的采样中看出. 使用4:4:4采样,一共要进行12次采样,对每一个Y,Cb和Cr,就需要12*8=96位,平均下来要96/4=24位。使用4:2:0就需要6*8 =48位,平均每个像素48/4=12位。

在一个4:2:0隔行扫描的视频序列中,对应于一个完整的视频帧的Y,Cb,Cr采样分配到两个场中。可以得到,隔行扫描的总采样数跟渐进式扫描中使用的采样数目是相同的。

对比一下:
Y41P(和Y411)(packed格式)格式为每个
像素保留Y分量,而UV分量在水平方向上每4个像素采样一次。一个宏像素为12个字节,实际表示8个像素。图像数据中YUV分量排列顺序如下: U0
Y0 V0 Y1 U4 Y2 V4 Y3 Y4 Y5 Y6 Y8 …
IYUV格式(planar)为每个像素都提取Y分量,而在UV分量的提取时,首先将图像分成若干个2 x 2的宏块,然后每个宏块提取一个U分量和一个V分量。YV12格式与IYUV类似,但仍然是平面模式。
YUV411、YUV420格式多见于DV数据中,前者
用于NTSC制,后者用于PAL制。YUV411为每个像素都提取Y分量,而UV分量在水平方向上每4个像素采样一次。YUV420并非V分量采样为0,
而是跟YUV411相比,在水平方向上提高一倍色差采样频率,在垂直方向上以U/V间隔的方式减小一半色差采样,如下图所示。
(好像显示不出来突下图像)

各种格式的具体使用位数的需求(使用4:2:0采样,对于每个元素用8个位大小表示):

格式: Sub-QCIF 亮度分辨率: 128*96   每帧使用的位: 147456
格式: QCIF   亮度分辨率: 176*144   每帧使用的位: 304128
格式: CIF   亮度分辨率: 352*288   每帧使用的位: 1216512
格式: 4CIF   亮度分辨率: 704*576   每帧使用的位: 4866048

YUY格式的更多相关文章

  1. 日期格式代码出现两次的错误 ORA-01810

    错误的原因是使用了两次MM . 一.Oracle中使用to_date()时格式化日期需要注意格式码 如:select to_date('2005-01-01 11:11:21','yyyy-MM-dd ...

  2. 一个粗心的Bug,JSON格式不规范导致AJAX错误

    一.事件回放  今天工作时碰到了一个奇怪的问题,这个问题很早很早以前也碰到过,不过没想到过这么久了竟然又栽在这里. 当时正在联调一个项目,由于后端没有提供数据接口,于是我直接本地建立了一个 json ...

  3. excel 日期/数字格式不生效需要但双击才会生效的解决办法

    原因: Excel2007设置过单元格格式后,并不能立即生效必须挨个双击单元格,才能生效.数据行很多.效率太低. 原因:主要是一些从网上拷贝过来的日期或数字excel默认为文本格式或特殊-中文数字格式 ...

  4. 很多人很想知道怎么扫一扫二维码就能打开网站,就能添加联系人,就能链接wifi,今天说下这些格式,明天做个demo

    有些功能部分手机不能使用,网站,通讯录,wifi基本上每个手机都可以使用. 在看之前你可以扫一扫下面几个二维码先看看效果: 1.二维码生成 网址 (URL) 包含网址的 二维码生成 是大家平时最常接触 ...

  5. System.Guid ToString五中格式

    参考:https://msdn.microsoft.com/en-us/library/97af8hh4.aspx 测试代码: using System; using System.Collectio ...

  6. WebApi返回Json格式字符串

    WebApi返回json格式字符串, 在网上能找到好几种方法, 其中有三种普遍的方法, 但是感觉都不怎么好. 先贴一下, 网上给的常用方法吧. 方法一:(改配置法) 找到Global.asax文件,在 ...

  7. 你所能用到的BMP格式介绍

    原理篇: 一.编码的意义. 让我们从一个简单的问题开始,-2&-255(中间的操作符表示and的意思)的结果是多少,这个很简单的问题,但是能够写出解答过程的人并不 多.这个看起来和图片格式没有 ...

  8. 值得注意的ibatis动态sql语法格式

    一.Ibatis常用动态sql语法,简单粗暴用一例子 <select id="iBatisSelectList" parameterClass="java.util ...

  9. Lind.DDD.LindMQ~关于持久化到Redis的消息格式

    回到目录 关于持久化到Redis的消息格式,主要是说在Broker上把消息持久化的过程中,需要存储哪些类型的消息,因为我们的消息是分topic的,而每个topic又有若干个queue组成,而我们的to ...

随机推荐

  1. Facebook Reporting API -- Facebook 数据导出API

    1.获取token 浏览器打开 "访问口令工具" (FB链接请FQ)  https://developers.facebook.com/tools/accesstoken/ App ...

  2. thinkphp3.2 where 条件查询 复查的查询语句

    复查的查询语句 有的时候,我们希望通过一次的查询就能解决问题,这个时候查询条件往往比较复杂,但是却比多次查询库来的高效. 实在是搞不定的话就直接用$where[‘_string’] = ‘xxxx’, ...

  3. POJ 1981 最大点覆盖问题(极角排序)

    Circle and Points Time Limit: 5000MS   Memory Limit: 30000K Total Submissions: 8346   Accepted: 2974 ...

  4. Oracle 11g数据库安装与卸载的方法图解(windows)

    一.Oracle 11g安装 安装之前要先确定自己的电脑配置,以windows为例,如果是win7以下系统如xp等,可以选择Oracle 10g.因为10g的程序文件只有200多兆,而11g及达到了2 ...

  5. CentOS 6.0 VNC远程桌面配置[转]

    原文出处: http://blog.haohtml.com/archives/12281 谢谢作者. 引言:必须明白:vncserver在调用的时候,会根据你的配置来启用server端的监听端口,端口 ...

  6. centos 服务器内存管理 服务于端口状态

    du su /目录/ 查看改目录大小 ls -lht /  查看文件详情,显示文件大小(直观) df -h 查看系统内存占用情况 centos 版本 lsb_release -a cat /etc/i ...

  7. react事件处理及动态样式添加

    多数据的事件绑定,循环数据来进行绑定.如下方式就是循环绑定事件的基本代码: this.state.lists.map(function(value,index,array){//代码片段}.bind( ...

  8. LDA学习笔记

    线性判别分析(Linear Discriminant Analysis,简称LDA)是一种经典的线性学习方法.其思想非常朴素,设法将样例投影到一条直线上,使得同类样例的投影点尽可能接近,异类的样例的投 ...

  9. springboot09 事务 H2数据库

    一.事务 1. 事务介绍 事务可以包含多个操作步骤 , 如果有一个步骤失败,那么这一组都以失败告终. 事务是指包含多个微小逻辑单元的一组操作, 只要其中有一个逻辑失败了,那么这一组操作就全部以失败告终 ...

  10. Error “can't use subversion command line client : svn” Probably the path to Subversion executable is wrong

    错误提示如图. 大概意思就是SVN路径不对 解决方法如下: 首先下载Subversion 1.8.13(1.8) 下载链接(https://www.visualsvn.com/downloads/) ...