2735: 世博会

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 124  Solved: 51
[Submit][Status][Discuss]

Description

四年一度的世博会又要举办了,Q国很荣幸成为了这次世博会的主办方。Q国主席QQ从全国各地收集了N件物品排成
一排,作为Q国馆的展出物。对于相邻摆放的一些物品,如果过于相似会让人觉得无聊,如果差别过大又会让人觉
得突兀。为了让人们对这次世博会的展出满意,QQ需要知道一些相邻物品的“差异度”。为了方便表示,QQ给每个
物品都定义了两个属性值A、B,两件物品之间的“绝对差异值”定义为它们对应属性的差的绝对值较大的一个。对
于一些物品的“差异度”,类似求方差的方法,QQ总会首先设想一个理想的“平均物品”,它的两个属性可以为任
意实数,且它与这些物品中的每个物品的“绝对差异值”之和最小。而这些物品的“差异度”就定义为这个最小的
和。QQ每次会询问:从第Li个到第Ri个物品的“差异度”是多少。现在,这个任务交给了神犇你。

Input

第一行两个整数N和Q,表示物品数和QQ的询问数。第二行N个整数A1到An,表示每个物品的A属性。第三行N个整数B
1到Bn,表示每个物品的B属性。之后Q行每行两个整数Li Ri,表示QQ的询问。
1<=N<=100000, 1<=Q<=100000, |Ai|,|Bi|<=1000000000,1<=Li<=Ri<=N

Output

共Q行,每行输出一个数,表示该次询问的物品的差异度,结果保留到小数点后两位。

Sample Input

4 2
1 6 -3 2
2 7 -1 3
1 4
2 3

Sample Output

10.00
9.00
样例说明
对于第一个询问,平均物品的两个属性可以是1和2差异度为max(0,0)+max(5,5)+max(4,3)+max(1,1)=10对于第二个
询问,平均物品的两个属性可以是6和7差异度为max(0,0)+max(9,8)=9
 

Solution

题意:每次询问要你给出$(A_0,B_0)$,最小化$\sum_{i=L}^{R} max{|A_i-A_0|,|B_i-B_0|} $。
 
先来点干货:
  • 切比雪夫距离:每一维差绝对值的最大值  $max\{|x_i-x_j|,|y_i-y_j|\}$

  • 曼哈顿距离:每一维差绝对值之和 $|x_i-x_j|+|y_i-y_j|$

  • 二维切比雪夫距离转曼哈顿距离:把坐标系旋转一下,然后再拉伸下。$(x,y)->(\frac{1}{2}(x-y),\frac{1}{2}(x+y))$

想法:将(A,B)当成二维坐标。然后再转换为(A-B,A+B)。问题变成最小化$\sum_{i=L}^{R} {|A_i-A_0|+|B_i-B_0|} $。每一维是独立的,并且每一维选中位数是最优的之一。所以用主席树维护一下查第K大,前\后缀和。

Code $O(n \log n)$

#include < cstdio >
#include < algorithm > #define gec getchar
#define FILE(F) freopen(F".in","r",stdin),freopen(F".out","w",stdout)
#define DEBUG fprintf(stderr,"Passing [%s] in Line (%d)\n",__FUNCTION__,__LINE__) typedef long long ll;
template < typename T >
inline void read(T &x)
{
x=0;bool f=0; char c=gec();
for(;c<'0'||c>'9';c=gec())f=(c=='-');
for(;c>='0'&&c<='9';c=gec())x=x*10+c-'0';
x=f?-x:x;
} const int MAXN(100010);
int n,q,A[MAXN],B[MAXN],X[MAXN],Y[MAXN]; struct AXLE
{
int a[MAXN],up;
void ins(int x){a[++up]=x;}
void build()
{
std::sort(a+1,a+1+up);
int _up=1;
for(int i=2;i<=up;i++)if(a[i]!=a[i-1])a[++_up]=a[i];
up=_up;
}
int Find(int x)
{
int l=1,r=up,mid,id=1;
while(l<=r)if(a[mid=(l+r)>>1]<=x)l=mid+1,id=mid;else r=mid-1;
return id;
}
}axle; namespace ChairMan_Tree
{
const int MAX_L(2000010);
struct CMT
{
int nx[MAX_L][2],Siz[MAX_L]; ll Sum[MAX_L];
int root[MAXN],stot,Val[MAXN],N; void update(int k)
{Sum[k]=Sum[nx[k][0]]+Sum[nx[k][1]];
Siz[k]=Siz[nx[k][0]]+Siz[nx[k][1]];} void modfiy(int&k,int k2,int L,int R,int x)//val[x]++;
{
if(!k)k=++stot,Sum[k]=Sum[k2],Siz[k]=Siz[k2];
if(L==R){Sum[k]+=Val[x];Siz[k]++; return ;}
int MID=(L+R)>>1;
if(x<=MID)modfiy(nx[k][0],nx[k2][0],L,MID,x),nx[k][1]=nx[k2][1];
else modfiy(nx[k][1],nx[k2][1],MID+1,R,x),nx[k][0]=nx[k2][0];
update(k);
} ll Que(int k1,int k2,int Rank)//查询区间第K大以及前\后缀和
{
int L=1,R=N,MID,Siz_L=0,Siz_R=0;
ll Sum_L=0,Sum_R=0;
while(L!=R)
{
MID=(L+R)>>1;
// fprintf(stderr,"%d %d %d\n",L,R,Rank);
// fprintf(stderr,"%d\n",Siz[nx[k1][0]]-Siz[nx[k2][0]]);
if(Siz[nx[k1][0]]-Siz[nx[k2][0]]<Rank)
Siz_L+=Siz[nx[k1][0]]-Siz[nx[k2][0]],Sum_L+=Sum[nx[k1][0]]-Sum[nx[k2][0]],
// fprintf(stderr,"%d %d %lld\n",L,MID,Sum[nx[k1][0]]-Sum[nx[k2][0]]),
L=MID+1,Rank-=Siz[nx[k1][0]]-Siz[nx[k2][0]],k1=nx[k1][1],k2=nx[k2][1];
else
Siz_R+=Siz[nx[k1][1]]-Siz[nx[k2][1]],Sum_R+=Sum[nx[k1][1]]-Sum[nx[k2][1]],
R=MID,k1=nx[k1][0],k2=nx[k2][0];
}
// fprintf(stderr,"%lld %d %lld %d %d %d\n",Sum_L,Siz_L,Sum_R,Siz_R,L,Val[L]);
return (ll)Siz_L*Val[L]-Sum_L+Sum_R-(ll)Siz_R*Val[L];
} }A_Tree,B_Tree; }using namespace ChairMan_Tree; void Pretreat()
{
for(int i=1;i<=n;i++)axle.ins(A[i]); axle.build();
for(int i=1;i<=n;i++)A[i]=axle.Find(A[i]);
A_Tree.N=axle.up; for(int i=1;i<=A_Tree.N;i++)A_Tree.Val[i]=axle.a[i];
for(int i=1;i<=n;i++)A_Tree.modfiy(A_Tree.root[i],A_Tree.root[i-1],1,A_Tree.N,A[i]);
axle.up=0;
for(int i=1;i<=n;i++)axle.ins(B[i]); axle.build();
for(int i=1;i<=n;i++)B[i]=axle.Find(B[i]);
B_Tree.N=axle.up; for(int i=1;i<=B_Tree.N;i++)B_Tree.Val[i]=axle.a[i];
for(int i=1;i<=n;i++)B_Tree.modfiy(B_Tree.root[i],B_Tree.root[i-1],1,B_Tree.N,B[i]);
} int main()
{
#ifndef ONLINE_JUDGE
FILE("C");
#endif
read(n);read(q);
for(int i=1;i<=n;i++)read(X[i]);
for(int i=1;i<=n;i++)read(Y[i]);
for(int i=1;i<=n;i++)A[i]=X[i]-Y[i],B[i]=X[i]+Y[i];
Pretreat();
for(int i=1,L,R;i<=q;i++)
{
read(L);read(R);
ll Ans_A=A_Tree.Que(A_Tree.root[R],A_Tree.root[L-1],(R-L+2)>>1);
ll Ans_B=B_Tree.Que(B_Tree.root[R],B_Tree.root[L-1],(R-L+2)>>1);
printf("%.2lf\n",(Ans_A+Ans_B)*0.5);
}
return 0;
}

BZOJ 2735: 世博会 主席树+切比雪夫距离转曼哈顿距离的更多相关文章

  1. BZOJ 3170 松鼠聚会(切比雪夫距离转曼哈顿距离)

    题意 有N个小松鼠,它们的家用一个点x,y表示,两个点的距离定义为:点(x,y)和它周围的8个点即上下左右四个点和对角的四个点,距离为1.现在N个松鼠要走到一个松鼠家去,求走过的最短距离. 思路 题目 ...

  2. BZOJ 3524 Couriers | 主席树

    BZOJ 3524 Couriers 题意 求一个区间内出现超过区间长度的一半的数,如果没有则输出0. 题解 我可能太菜了吧--这道题愣是没想出来-- 维护权值主席树,记录每个数都出现过多少次: 查询 ...

  3. bzoj 3653 谈笑风生 —— 主席树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3653 对于一个 (a,b,c),分成 b 是 a 的祖先和 b 在 a 子树里两部分: 第一 ...

  4. bzoj 2588 树上主席树

    主席树上树,对于每个节点,继承其父亲的,最后跑f[x]+f[y]-f[lca]-f[fa[lca]] 去重竟然要减一,我竟然不知道?? #include<cstdio> #include& ...

  5. bzoj 2653: middle (主席树+二分)

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2522  Solved: 1434[Submit][Status][Disc ...

  6. BZOJ - 2809 dispatching 主席树+dfs序

    在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 Master以外,每名忍者都有且仅有一个上级.为保密,同时增强忍者们的 ...

  7. BZOJ.3170.[TJOI2013]松鼠聚会(切比雪夫距离转曼哈顿距离)

    题目链接 将原坐标系每个点的坐标\((x,y)\)变为\((x+y,x-y)\),则原坐标系中的曼哈顿距离等于新坐标系中的切比雪夫距离. 反过来,将原坐标系每个点的坐标\((x,y)\)变为\((\f ...

  8. BZOJ 3956: Count 主席树 可持久化线段树 单调栈

    https://www.lydsy.com/JudgeOnline/problem.php?id=3956 从描述可以得到性质: 每个好点对 ( 除了差值为1的好点对 ) 中间的数 ( i , j ) ...

  9. bzoj 2653 middle(主席树)

    题面:https://vjudge.net/problem/HYSBZ-2653 博客:https://blog.csdn.net/litble/article/details/78984846 这个 ...

随机推荐

  1. 六度分离 (folyd算法)

    1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为"小世界现象(small world phenomenon)"的著名假说,大意是说,任何2个素不相识的人中间最多只隔着 ...

  2. POJ-2112 Optimal Milking(floyd+最大流+二分)

    题目大意: 有k个挤奶器,在牧场里有c头奶牛,每个挤奶器可以满足m个奶牛,奶牛和挤奶器都可以看成是实体,现在给出两个实体之间的距离,如果没有路径相连,则为0,现在问你在所有方案里面,这c头奶牛需要走的 ...

  3. pandas关于其他merge用法(df1的的列索引和df2的行索引对应时候的)

  4. day_03 字符串

    1.python基础数据类型 1.int整数 2.str 字符串.(不会用字符串保存大量数据) 3.bool 布尔值. TRUE,FALSE 4.list 列表(重点) 存放大量数据 用[]表示 5. ...

  5. idea(3)-jetty配置

    1.jetty&jdk版本 9.3----->1.8 9.2----->1.7 8------->1.6 2.pom.xml <plugin> <group ...

  6. vue中this.$router.push() 传参

    1  params 传参 注意⚠️:patams传参 ,路径不能使用path 只能使用name,不然获取不到传的数据 this.$router.push({name: 'dispatch', para ...

  7. Spring MVC自定义错误页面

    在web.xml中添加: <error-page(其他属性404...省略咯)> <location>/error</location> </error-pa ...

  8. vue-cli生成的重要代码详解

    安装好vue-cli之后,我们可以在package.json中看到下面所示: { // 项目名称 "name": "myvue", // 项目版本 " ...

  9. git 基础教程

    git 提交 全部文件 git add .  git add xx命令可以将xx文件添加到暂存区,如果有很多改动可以通过 git add -A .来一次添加所有改变的文件.注意 -A 选项后面还有一个 ...

  10. 工作采坑札记:2. Hadoop中MultipleInputs的使用陷阱

    1. 背景 近日在一个Hadoop项目中使用MultipleInputs增加多输入文件时,发现相同路径仅会加载一次,导致后续的统计任务严重失真.本博文旨在记录异常的排查及解决方案. 2. 情景重现 ( ...