题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=3572

题目大意:

给N个任务,M台机器。每个任务有最早才能开始做的时间S,deadline E,和持续工作的时间P。每个任务可以分段进行,但是在同一时刻,一台机器最多只能执行一个任务. 问存不存在可行的工作时间。

解题思路:

由于时间<=500且每个任务都能断断续续的执行,那么我们把每一天时间作为一个节点来用网络流解决该题.

建图: 源点s(编号0), 时间1-500天编号为1到500, N个任务编号为500+1 到500+N, 汇点t(编号501+N).

源点s到每个任务i有边(s, i, Pi)

每一天到汇点有边(j, t, M) (其实这里的每一天不一定真要从1到500,只需要取那些被每个任务覆盖的每一天即可)

如果任务i能在第j天进行,那么有边(i, j, 1) 注意由于一个任务在一天最多只有1台机器执行,所以该边容量为1,不能为INF或M哦.

最后看最大流是否 == 所有任务所需要的总天数.

用增广路最大流会超时,得用dinic算法优化找增广路

(图论的题目难在如何建图,而不是算法的使用)

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = + ;
const int INF = 1e9;
struct edge
{
int u, v, c, f;
edge(){}
edge(int u, int v, int c, int f):u(u), v(v), c(c), f(f){}
};
vector<edge>e;
vector<int>G[maxn];
int level[maxn];//BFS分层
int iter[maxn];//当前弧优化
int n, m;
void init()
{
for(int i = ; i < maxn; i++)G[i].clear();
e.clear();
}
void addedge(int u, int v, int c)
{
e.push_back(edge(u, v, c, ));
e.push_back(edge(v, u, , ));
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
void BFS(int s)
{
memset(level, -, sizeof(level));
queue<int>q;
level[s] = ;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
for(int i = ; i < G[u].size(); i++)
{
edge& now = e[G[u][i]];
int v = now.v;
if(now.c > now.f && level[v] < )
{
level[v] = level[u] + ;
q.push(v);
}
}
}
}
int dfs(int u, int t, int f)//u为当前点,t为终点,f为当前流量
{
if(u == t)return f;
for(int& i = iter[u]; i < G[u].size(); i++)//当前弧优化
{
edge& now = e[G[u][i]];
int v = now.v;
if(now.c > now.f && level[u] < level[v])
{
int d = dfs(v, t, min(f, now.c - now.f));
if(d > )
{
now.f += d;
e[G[u][i] ^ ].f -= d;
return d;
}
}
}
return ;
}
int Maxflow(int s, int t)
{
int flow = ;
for(;;)
{
BFS(s);
if(level[t] < )return flow;
memset(iter, , sizeof(iter));
int f;
while((f = dfs(s, t, INF)) > )flow += f;
}
return flow;
}
int main()
{
int T, cases = ;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
int maxday = ;
int sumday = ;
init();
int p, s, e;
for(int i = ; i <= n; i++)
{
scanf("%d%d%d", &p, &s, &e);
addedge(, + i, p);
for(int j = s; j <= e; j++)
addedge(i + , j, );
maxday = max(maxday, e);
sumday += p;
}
for(int i = ; i <= maxday; i++)
addedge(i, + n, m);
if(Maxflow(, + n) == sumday)
printf("Case %d: Yes\n\n", ++cases);
else printf("Case %d: No\n\n", ++cases);
}
return ;
}

hdu-3572 Task Schedule---最大流判断满流+dinic算法的更多相关文章

  1. HDU 3572 Task Schedule(拆点+最大流dinic)

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  2. hdu 3572 Task Schedule (dinic算法)

    pid=3572">Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. HDU 3572 Task Schedule (最大流)

    C - Task Schedule Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  4. hdu 3572 Task Schedule(最大流&amp;&amp;建图经典&amp;&amp;dinic)

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  5. hdu 3572 Task Schedule【 最大流 】

    求出最大流,再判断是否满流 先不理解为什么要这样建图 后来看了这一篇题解 http://blog.csdn.net/u012350533/article/details/12361003 把0看做源点 ...

  6. hdu 3572 最大流判断满流

    #include<stdio.h> #include<string.h> #include<queue> using namespace std; #define ...

  7. hdu 3572 Task Schedule(最大流)2010 ACM-ICPC Multi-University Training Contest(13)——Host by UESTC

    题意: 告诉我们有m个任务和k个机器.第i个任务需要ci天完成,最早从第ai天开始,最晚在第bi天结束.每台机器每天可以执行一个任务.问,是否可以将所有的任务都按时完成? 输入: 首行输入一个整数t, ...

  8. hdu 3572 Task Schedule 网络流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3572 Our geometry princess XMM has stoped her study i ...

  9. hdu 3572 Task Schedule

    Task Schedule 题意:有N个任务,M台机器.每一个任务给S,P,E分别表示该任务的(最早开始)开始时间,持续时间和(最晚)结束时间:问每一个任务是否能在预定的时间区间内完成: 注:每一个任 ...

  10. 解题报告:hdu 3572 Task Schedule(当前弧优化Dinic算法)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

随机推荐

  1. 《OD学storm》20160828

    一.Storm项目 1. 架构 javasdk -> nginx -> 日志文件 -> flume agent(collector) -> hdfs -> kafka - ...

  2. [Xcode 实际操作]四、常用控件-(4)UILabel文本标签的自动换行

    目录:[Swift]Xcode实际操作 本文将演示标签控件的换行功能, 在项目导航区,打开视图控制器的代码文件[ViewController.swift] import UIKit class Vie ...

  3. 使用pods添加第三方的时候,出现ld: library not found for -lpop

    ld: library not found for -lpop 错误,是在使用pods添加第三方的时候,出现的编译错误,同时伴随着的是error: linker command failed with ...

  4. 自动化运维工具之Cobbler

    一.anaconda anaconda负责安装系统向导,默认为GUI界面,如果我们使用ks自动应答安装的话建议使用TUI界面来安装 在安装启动界面我们可以按esc键来自己手动指定安装启动选项 anac ...

  5. 洛谷 P1365 WJMZBMR打osu! / Easy

    题目背景 原 维护队列 参见P1903 题目描述 某一天\(WJMZBMR\)在打\(osu~~~\)但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有\(n\)次点击要做,成功 ...

  6. php微信公众号开发简单记录

    开发前准备:1.服务器 2.微信公众号测试号(有真实的账号更好) 测试号申请地址:https://mp.weixin.qq.com/debug/cgi-bin/sandbox?t=sandbox/lo ...

  7. 如何在手机项目中使用rem单位

    rem这是个低调的css单位,近一两年开始崭露头角,有许多同学对rem的评价不一,有的在尝试使用,有的在使用过程中遇到坑就弃用了.但是我对rem综合评价是用来做web app它绝对是最合适的人选之一. ...

  8. CentOS7.3下Zabbix3.5之微信报警配置

    一.报警脚本放到服务端的 /usr/lib/zabbix/alertscripts/下      属组属主为zabbix zabbix      有执行权限vim weixinbaojing.py # ...

  9. QueueUtil

    import com.rabbitmq.client.Connection; import com.rabbitmq.client.ConnectionFactory; import org.slf4 ...

  10. 自动化测试 - Appium + Python史上最全最简环境搭建步骤

    一,为什么是Appium借一张图: 1.1 Appium优点 l  开源 l  跨架构:NativeApp.Hybird App.Web App l  跨设备:Android.iOS.Firefox ...