POJ1060 Modular multiplication of polynomials解题报告 (2011-12-09 20:27:53)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 3239 | Accepted: 1459 |
Description
(x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2
Subtraction of two polynomials is done similarly. Since subtraction of coefficients is performed by subtraction modulo 2 which is also the exclusive-or operation, subtraction of polynomials is identical to addition of polynomials.
(x^6 + x^4 + x^2 + x + 1) - (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2
Multiplication of two polynomials is done in the usual way (of course, addition of coefficients is performed by addition modulo 2).
(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) = x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1
Multiplication of two polynomials f(x) and g(x) modulo a polynomial h(x) is the remainder of f(x)g(x) divided by h(x).
(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) modulo (x^8 + x^4 + x^3 + x + 1) = x^7 + x^6 + 1
The largest exponent of a polynomial is called its degree. For example, the degree of x^7 + x^6 + 1 is 7.
Given three polynomials f(x), g(x), and h(x), you are to write a program that computes f(x)g(x) modulo h(x).
We assume that the degrees of both f(x) and g(x) are less than the degree of h(x). The degree of a polynomial is less than 1000.
Since coefficients of a polynomial are 0 or 1, a polynomial can be represented by d+1 and a bit string of length d+1, where d is the degree of the polynomial and the bit string represents the coefficients of the polynomial. For example, x^7 + x^6 + 1 can be
represented by 8 1 1 0 0 0 0 0 1.
Input
above.
Output
Sample Input
2 7 1 0 1 0 1 1 1 8 1 0 0 0 0 0 1 1 9 1 0 0 0 1 1 0 1 1 10 1 1 0 1 0 0 1 0 0 1 12 1 1 0 1 0 0 1 1 0 0 1 0 15 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1
Sample Output
8 1 1 0 0 0 0 0 1 14 1 1 0 1 1 0 0 1 1 1 0 1 0 0
题目是说以0 1给3个数,
先按照它的乘法规则把头两个数相乘,再把结果除以第三个数求余。
对于它的加法,就是对应为上0+0=0,0+1=1,1+0=1,1+1=0.
这我们可以用位运算的异或运算符“^”来完成。
减法和加法是相同的……
乘法就是说x^6 X x^7结果x^13.按照一般乘法步骤是先两个数每个位上的数字相乘后加到对应的位置上。
求余我们可以用减法代替。
像例子中的(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) modulo (x^8 + x^4 + x^3 + x + 1) = x^7 + x^6 + 1
其中(x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1)=x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1
x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 对应序列是1 0 1 0 1 1 0 1 1 1 1 0 0 1
x^8 + x^4 + x^3 + x + 1 对应序列是1 0 0 0 1 1 0 1 1.下面是求余过程:
1) 1 0 1 0 1 1 0 1 1 1 1 0 0 1
- 1 0 0 0 1 1 0 1 1(减)
-------------
...0 0 1 0 0 0 0 0 0(结果)
....2) 1 0 0 0 0 0 0 1 1(后取两位补上)
....- 1 0 0 0 1 1 0 1 1(减)
.....-------------
.......0 0 0 0 1 1 0 0 0 (结果)
...............1 1 0 0 0 0 0 1(补上位后发现不够长度,所以算完了)
上述所说的补位,其实可以用个变量j指定被减的开始位置,当位置小于某个数时停止。
最后要注意最后余数可能是0,所以要对此加以判断。
还有数组要开到2000……因为两个1000长度的数相乘最长是2000.
#include <iostream>
using namespace std;
int main()
{char f[4][2046];
int n,i,m,l[3],j;
cin>>n;
while (n--)
{memset(f,0,sizeof(f));
for (i=0;i<3;i++)
{cin>>l[i];
l[i]-=1;
for (m=l[i];m>=0;m--) {cin>>f[i][m];f[i][m]-=48;}
}
for (i=l[0];i>=0;i--)
for (m=l[1];m>=0;m--)
f[3][i+m]=f[3][i+m]^(f[0][i]&&f[1][m]);//mutiply
j=l[0]+l[1];
while (f[3][j]==0) if (j) j--;else j=-1;
while (j>=l[2])
{for (i=j;i>=j-l[2];i--)
f[3][i]^=f[2][i-j+l[2]];
while (f[3][j]==0) if (j) j--;else j=-1;
}
if (j>=0)
{cout<<j+1;
for (i=j;i>=0;i--) cout<<' '<<f[3][i]+0;}
else cout<<"1 0";
cout<<endl;
}
return 0;
}
POJ1060 Modular multiplication of polynomials解题报告 (2011-12-09 20:27:53)的更多相关文章
- POJ1060 Modular multiplication of polynomials
题目来源:http://poj.org/problem?id=1060 题目大意: 考虑系数为0和1的多项式.两个多项式的加法可以通过把相应次数项的系数相加而实现.但此处我们用模2加法来计算系数之和. ...
- POJ 1060:Modular multiplication of polynomials
Modular multiplication of polynomials Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4 ...
- POJ 1060 Modular multiplication of polynomials(多项式的加减乘除,除法转化成减法来求)
题意:给出f(x),g(x),h(x)的 (最高次幂+1)的值,以及它们的各项系数,求f(x)*g(x)/h(x)的余数. 这里多项式的系数只有1或0,因为题目要求:这里多项式的加减法是将系数相加/减 ...
- UVALive 2323 Modular Multiplication of Polynomials(模拟)
这是一个相对简单的模拟,因为运算规则已经告诉了我们,并且比较简单,不要被吓到…… 思路:多项式除以另外一个多项式,如果能除,那么他的最高次一定被降低了,如果最高次不能被降低,那说明已经无法被除,就是题 ...
- PAT 解题报告 1050. String Subtraction (20)
1050. String Subtraction (20) Given two strings S1 and S2, S = S1 - S2 is defined to be the remainin ...
- leetcode解题报告(12):Maximum Subarray
描述 Find the contiguous subarray within an array (containing at least one number) which has the large ...
- 2011 ACM-ICPC 成都赛区解题报告(转)
2011 ACM-ICPC 成都赛区解题报告 首先对F题出了陈题表示万分抱歉,我们都没注意到在2009哈尔滨赛区曾出过一模一样的题.其他的话,这套题还是非常不错的,除C之外的9道题都有队伍AC,最终冠 ...
- [置顶] 刘汝佳《训练指南》动态规划::Beginner (25题)解题报告汇总
本文出自 http://blog.csdn.net/shuangde800 刘汝佳<算法竞赛入门经典-训练指南>的动态规划部分的习题Beginner 打开 这个专题一共有25题,刷完 ...
- poj分类解题报告索引
图论 图论解题报告索引 DFS poj1321 - 棋盘问题 poj1416 - Shredding Company poj2676 - Sudoku poj2488 - A Knight's Jou ...
随机推荐
- busybox下inittab中runlevel解析
Order of scripts run in /etc/rc?.d ================================== 0. Overview. All scripts execu ...
- JSP 与 PHP、ASP、ASP.NET 等语言类似,运行在服务端的语言。
JSP(全称Java Server Pages)是由 Sun Microsystems 公司倡导和许多公司参与共同创建的一种使软件开发者可以响应客户端请求,而动态生成 HTML.XML 或其他格式文档 ...
- SPSS统计功能与模块对照表
SPSS统计功能 - 应用速查表第一列为统计方法,中间为统计功能,最后一列为所在模块 1 ANOVA Models(单因素方差分析:简单因子) : 摘要 描述 方差 轮廓 - SPSS Base 2 ...
- 卸载系统自带libevent
rpm -qa|grep libevent yum remove libevent* 或 rpm -e --nodeps --allmatches libevent*
- Lumen开发:如何向 IoC 容器中添加自己定义的类
版权声明:本文为博主原创文章,未经博主允许不得转载. 先在起始文件bootstrap/app.php加上$app->register(App\Providers\User\UserService ...
- centos7.0 安装nginx
在centos7.0下安装nginx需要安装 prce和zlib包去官网下载相应的包 然后解压相应的包进行编译 解压nginx源码包进入到解压文件 ./configure --sbin-path=/u ...
- elasticsearch从入门到出门-05-集群之踩坑
自己搭的集群, 设备: win10 + ubuntu 16 的虚拟机一个: 下载的版本:elasticsearch-5.2.0 win10 解压下就好了,不说了. ubuntu 上,我想说多了都是泪! ...
- 小程序获取openId
1.小程序获取微信openId wx.login({ success: res => { // 发送 res.code 到后台换取 openId, sessionKey, unionId / ...
- UIApplicationDelegate 各方法回调时机
本篇文章主要介绍一些UIApplicationDelegate中几个常用的回调方法的调用时机.以帮助你判断哪些方法倒底放到哪个回调中去实现. 1. – (void)applicationDidFini ...
- 在函数中如何获取 线程对象、线程唯一ID
threading.current_thread() threading.current_thread().ident