提到二叉查找树,就得想到二叉查找树的递归定义,

左子树的节点值都小于根节点,右子树的节点值都大于根节点。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个n,问有多少个不同的二叉查找树,使得每个节点的值为 1...n?

例如,

给定n=3,你的程序应该返回所有的这5个不同的二叉排序树的个数。

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.

For example,
Given n = 3, your program should return all 5 unique BST's shown below.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree with next pointer.
 * struct TreeLinkNode {
 *  int val;
 *  TreeLinkNode *left, *right, *next;
 *  TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
 * };
 */
vector<TreeNode *> generate(int start, int end)
{
    vector<TreeNode *> subTree;
    if (start > end)
    {
        subTree.push_back(NULL);
        return subTree;
    }

    //对每个节点做root节点做遍历判断,当某个节点为root时候满足条件的二叉树可能有多个
    for (int k = start; k <= end; ++k)
    {
        vector<TreeNode *> leftSubTree = generate(start, k - 1);
        vector<TreeNode *> rightSubTree = generate(k + 1, end);
        for (int i = 0; i < leftSubTree.size(); ++i)
        {
            for (int j = 0; j < rightSubTree.size(); ++j)
            {
                TreeNode *tmp = new TreeNode(k);
                tmp->left = leftSubTree[i];
                tmp->right = rightSubTree[j];
                subTree.push_back(tmp);
            }
        }
    }
    return subTree;
}

vector<TreeNode *> generateTrees(int n)
{
    if (n == 0)
    {
        return generate(1, 0);
    }
    return generate(1, n);
}

vector<vector<int> > levelOrder(TreeNode *root)
{

vector<vector<int> > matrix;
    if(root == NULL)
    {
        return matrix;
    }
    vector<int> temp;
    temp.push_back(root->val);
    matrix.push_back(temp);

vector<TreeNode *> path;
    path.push_back(root);

int count = 1;
    while(!path.empty())
    {
        TreeNode *tn = path.front();
        if(tn->left)
        {
            path.push_back(tn->left);
        }
        if(tn->right)
        {
            path.push_back(tn->right);
        }
        path.erase(path.begin());
        count--;

if(count == 0)
        {
            vector<int> tmp;
            vector<TreeNode *>::iterator it = path.begin();
            for(; it != path.end(); ++it)
            {
                tmp.push_back((*it)->val);
            }
            if(tmp.size() > 0)
            {
                matrix.push_back(tmp);
            }
            count = path.size();
        }
    }
    return matrix;
}

int main()
{

vector<TreeNode *> vRoot;
    vector<vector<int> > ans;

vRoot = generateTrees(3);

for (int n = 0; n < vRoot.size(); ++n)
    {
        ans.clear();
        ans = levelOrder(vRoot[n]);
        cout << "----------------------" << endl;
        for (int i = 0; i < ans.size(); ++i)
        {
            for (int j = 0; j < ans[i].size(); ++j)
            {
                cout << ans[i][j] << " ";
            }
            cout << endl;
        }
    }

for (int i = 0; i < vRoot.size(); ++i)
    {
        DestroyTree(vRoot[i]);
    }
    return 0;
}

 
结果输出:
----------------------
1
2
3
----------------------
1
3
2
----------------------
2
1 3
----------------------
3
1
2
----------------------
3
2
1
 
BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);

#endif /*_BINARY_TREE_H_*/

BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}

 
 
 
 

【二叉查找树】02不同的二叉查找树个数II【Unique Binary Search Trees II】的更多相关文章

  1. [Swift]LeetCode95. 不同的二叉搜索树 II | Unique Binary Search Trees II

    Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ...

  2. [LeetCode] 95. Unique Binary Search Trees II(给定一个数字n,返回所有二叉搜索树) ☆☆☆

    Unique Binary Search Trees II leetcode java [LeetCode]Unique Binary Search Trees II 异构二叉查找树II Unique ...

  3. leetcode 96. Unique Binary Search Trees 、95. Unique Binary Search Trees II 、241. Different Ways to Add Parentheses

    96. Unique Binary Search Trees https://www.cnblogs.com/grandyang/p/4299608.html 3由dp[1]*dp[1].dp[0]* ...

  4. 【LeetCode】95. Unique Binary Search Trees II 解题报告(Python)

    [LeetCode]95. Unique Binary Search Trees II 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzh ...

  5. 【LeetCode】95. Unique Binary Search Trees II

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  6. 【leetcode】Unique Binary Search Trees II

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  7. 41. Unique Binary Search Trees && Unique Binary Search Trees II

    Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...

  8. LeetCode: Unique Binary Search Trees II 解题报告

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  9. Unique Binary Search Trees,Unique Binary Search Trees II

    Unique Binary Search Trees Total Accepted: 69271 Total Submissions: 191174 Difficulty: Medium Given  ...

  10. LeetCode解题报告—— Reverse Linked List II & Restore IP Addresses & Unique Binary Search Trees II

    1. Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass ...

随机推荐

  1. 写shader注意的一些报错

    1.Shader warning in 'Custom/1': Both vertex and fragment programs must be present in a CGPROGRAM. Ex ...

  2. 安装Hadoop 1.1.2 (一 安装JDK)

    1 下载jdk1.7 xxx .rpm 2 以Root权限登陆 3 修改文件权限  chmod +x jdk-7u25-linux-x64.rpm 4 安装 JDK  rpm -ivh jdk-7u2 ...

  3. centos7.0 增加/usr分区的容量减少home分区的大小

    把/home内容备份,然后将/home文件系统所在的逻辑卷删除,扩大/root文件系统,新建/home:tar cvf /tmp/home.tar /home #备份/homeumount /home ...

  4. SQL SERVER 2008查看sql执行的时间

    set statistics profile onset statistics io onset statistics time ongo<这里写上你的语句...>goset statis ...

  5. Java程序发送邮件

    之前上网有看到过别人总结的使用java程序发送邮件,于是自己下来练习,把自己学习的一些心得总结出来. 首先我们这里需要采用两个jar包: 需要的朋友可以自行上网去CSDN类似的网站上面找 顺便把自己测 ...

  6. iOS Load方法 和 initialize方法的比较

    一.load方法特点: 1. 当类被引用进程序的时候会执行这个函数 2.一个类的load方法不用写明[super load],父类就会收到调用,并且在子类之前. 3.Category的load也会收到 ...

  7. Data Decisions: DSP vs. DMP

    http://www.cmo.com/features/articles/2016/3/9/data-decisions-dsp-vs-dmp.html As marketers assess the ...

  8. hibernate多对多关系配置

    一.创建用户,角色实体类. 一名用户可以有多个角色.一个角色可以对于多名用户. 用户实体类 public class User { private int uId; private String uN ...

  9. statu 设置

    DATA: itab TYPE TABLE OF sy-ucomm. APPEND 'DELE' TO itab. APPEND 'PICK' TO itab. SET PF-STATUS 'STA3 ...

  10. ALV调用的几个函数

     转 ALV的调用主要由以下几个标准函数实现,所有函数的输入输出参数必须大写,否则系统会出现异常中止,相关函数如下: 1)REUSE_ALV_FIENDCATALOG_MERGE:根据内表结构返回FI ...