提到二叉查找树,就得想到二叉查找树的递归定义,

左子树的节点值都小于根节点,右子树的节点值都大于根节点。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

给定一个n,问有多少个不同的二叉查找树,使得每个节点的值为 1...n?

例如,

给定n=3,你的程序应该返回所有的这5个不同的二叉排序树的个数。

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.

For example,
Given n = 3, your program should return all 5 unique BST's shown below.

   1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
test.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
 
#include <iostream>
#include <cstdio>
#include <stack>
#include <vector>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree with next pointer.
 * struct TreeLinkNode {
 *  int val;
 *  TreeLinkNode *left, *right, *next;
 *  TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
 * };
 */
vector<TreeNode *> generate(int start, int end)
{
    vector<TreeNode *> subTree;
    if (start > end)
    {
        subTree.push_back(NULL);
        return subTree;
    }

    //对每个节点做root节点做遍历判断,当某个节点为root时候满足条件的二叉树可能有多个
    for (int k = start; k <= end; ++k)
    {
        vector<TreeNode *> leftSubTree = generate(start, k - 1);
        vector<TreeNode *> rightSubTree = generate(k + 1, end);
        for (int i = 0; i < leftSubTree.size(); ++i)
        {
            for (int j = 0; j < rightSubTree.size(); ++j)
            {
                TreeNode *tmp = new TreeNode(k);
                tmp->left = leftSubTree[i];
                tmp->right = rightSubTree[j];
                subTree.push_back(tmp);
            }
        }
    }
    return subTree;
}

vector<TreeNode *> generateTrees(int n)
{
    if (n == 0)
    {
        return generate(1, 0);
    }
    return generate(1, n);
}

vector<vector<int> > levelOrder(TreeNode *root)
{

vector<vector<int> > matrix;
    if(root == NULL)
    {
        return matrix;
    }
    vector<int> temp;
    temp.push_back(root->val);
    matrix.push_back(temp);

vector<TreeNode *> path;
    path.push_back(root);

int count = 1;
    while(!path.empty())
    {
        TreeNode *tn = path.front();
        if(tn->left)
        {
            path.push_back(tn->left);
        }
        if(tn->right)
        {
            path.push_back(tn->right);
        }
        path.erase(path.begin());
        count--;

if(count == 0)
        {
            vector<int> tmp;
            vector<TreeNode *>::iterator it = path.begin();
            for(; it != path.end(); ++it)
            {
                tmp.push_back((*it)->val);
            }
            if(tmp.size() > 0)
            {
                matrix.push_back(tmp);
            }
            count = path.size();
        }
    }
    return matrix;
}

int main()
{

vector<TreeNode *> vRoot;
    vector<vector<int> > ans;

vRoot = generateTrees(3);

for (int n = 0; n < vRoot.size(); ++n)
    {
        ans.clear();
        ans = levelOrder(vRoot[n]);
        cout << "----------------------" << endl;
        for (int i = 0; i < ans.size(); ++i)
        {
            for (int j = 0; j < ans[i].size(); ++j)
            {
                cout << ans[i][j] << " ";
            }
            cout << endl;
        }
    }

for (int i = 0; i < vRoot.size(); ++i)
    {
        DestroyTree(vRoot[i]);
    }
    return 0;
}

 
结果输出:
----------------------
1
2
3
----------------------
1
3
2
----------------------
2
1 3
----------------------
3
1
2
----------------------
3
2
1
 
BinaryTree.h:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
 
#ifndef _BINARY_TREE_H_
#define _BINARY_TREE_H_

struct TreeNode
{
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

TreeNode *CreateBinaryTreeNode(int value);
void ConnectTreeNodes(TreeNode *pParent,
                      TreeNode *pLeft, TreeNode *pRight);
void PrintTreeNode(TreeNode *pNode);
void PrintTree(TreeNode *pRoot);
void DestroyTree(TreeNode *pRoot);

#endif /*_BINARY_TREE_H_*/

BinaryTree.cpp:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
 
#include <iostream>
#include <cstdio>
#include "BinaryTree.h"

using namespace std;

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */

//创建结点
TreeNode *CreateBinaryTreeNode(int value)
{
    TreeNode *pNode = new TreeNode(value);

return pNode;
}

//连接结点
void ConnectTreeNodes(TreeNode *pParent, TreeNode *pLeft, TreeNode *pRight)
{
    if(pParent != NULL)
    {
        pParent->left = pLeft;
        pParent->right = pRight;
    }
}

//打印节点内容以及左右子结点内容
void PrintTreeNode(TreeNode *pNode)
{
    if(pNode != NULL)
    {
        printf("value of this node is: %d\n", pNode->val);

if(pNode->left != NULL)
            printf("value of its left child is: %d.\n", pNode->left->val);
        else
            printf("left child is null.\n");

if(pNode->right != NULL)
            printf("value of its right child is: %d.\n", pNode->right->val);
        else
            printf("right child is null.\n");
    }
    else
    {
        printf("this node is null.\n");
    }

printf("\n");
}

//前序遍历递归方法打印结点内容
void PrintTree(TreeNode *pRoot)
{
    PrintTreeNode(pRoot);

if(pRoot != NULL)
    {
        if(pRoot->left != NULL)
            PrintTree(pRoot->left);

if(pRoot->right != NULL)
            PrintTree(pRoot->right);
    }
}

void DestroyTree(TreeNode *pRoot)
{
    if(pRoot != NULL)
    {
        TreeNode *pLeft = pRoot->left;
        TreeNode *pRight = pRoot->right;

delete pRoot;
        pRoot = NULL;

DestroyTree(pLeft);
        DestroyTree(pRight);
    }
}

 
 
 
 

【二叉查找树】02不同的二叉查找树个数II【Unique Binary Search Trees II】的更多相关文章

  1. [Swift]LeetCode95. 不同的二叉搜索树 II | Unique Binary Search Trees II

    Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1 ...

  2. [LeetCode] 95. Unique Binary Search Trees II(给定一个数字n,返回所有二叉搜索树) ☆☆☆

    Unique Binary Search Trees II leetcode java [LeetCode]Unique Binary Search Trees II 异构二叉查找树II Unique ...

  3. leetcode 96. Unique Binary Search Trees 、95. Unique Binary Search Trees II 、241. Different Ways to Add Parentheses

    96. Unique Binary Search Trees https://www.cnblogs.com/grandyang/p/4299608.html 3由dp[1]*dp[1].dp[0]* ...

  4. 【LeetCode】95. Unique Binary Search Trees II 解题报告(Python)

    [LeetCode]95. Unique Binary Search Trees II 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzh ...

  5. 【LeetCode】95. Unique Binary Search Trees II

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  6. 【leetcode】Unique Binary Search Trees II

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  7. 41. Unique Binary Search Trees && Unique Binary Search Trees II

    Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees) that st ...

  8. LeetCode: Unique Binary Search Trees II 解题报告

    Unique Binary Search Trees II Given n, generate all structurally unique BST's (binary search trees) ...

  9. Unique Binary Search Trees,Unique Binary Search Trees II

    Unique Binary Search Trees Total Accepted: 69271 Total Submissions: 191174 Difficulty: Medium Given  ...

  10. LeetCode解题报告—— Reverse Linked List II & Restore IP Addresses & Unique Binary Search Trees II

    1. Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass ...

随机推荐

  1. ubuntu下搭建的lamp环境新建站点

    这几天刚装了一个ubuntu 16.04桌面版,总之来来回回几遍才基本把环境搭建好,本来用apt-get搭建,结果不知道什么原因16.04版不支持装php5 ,提示源放弃了php5版本,不得不使用ph ...

  2. Android自定义属性format类型

    1. reference:参考某一资源ID. (1)属性定义: <declare-styleable name = "名称"> <attr name = &quo ...

  3. TP的分页加查询

    1.查询显示数据库的内容 控制器里的内容 public function shouye() { $n = M("car"); $arr = $n->select(); $th ...

  4. 【BZOJ4269】再见Xor 高斯消元

    [BZOJ4269]再见Xor Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. Input 第一行一个正整 ...

  5. 《Hive编程指南》问题

    1.Hive不支持记录级别的更新.插入或删除? 2.sort by 和 order by 的区别? https://blog.csdn.net/jthink_/article/details/3890 ...

  6. 九度OJ 1344:可乐瓶展览 (DP)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:430 解决:76 题目描述: 众所周知JOBDU旗下的JOBCOLA公司是文明全球的著名可乐制造商,与其它可乐公司不同的是,JOBCOLA可 ...

  7. Python菜鸟之路:Python基础-生成器和迭代器、递归

    一.迭代器 迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,知道所有的元素被访问完结束.迭代器只能往前不会后退. 1. 迭代器优点 对于无法随机访问的数据结构(比如set)而言, ...

  8. centos修改mysql密码或者进入mysql后解决Access denied for user ''@'localhost' to database 'mysql错误

    原因是MySQL的密码有问题 用mysql匿名用户可以进入数据库,但是看不见mysql数据库. 解决办法:具体操作步骤:关闭mysql:# service mysqld stop然后:# mysqld ...

  9. 13.Django模版

    没什么好说的,看官方文档 https://docs.djangoproject.com/en/1.9/ref/templates/builtins/

  10. Linux c编程:线程属性

    前面介绍了pthread_create函数,并且当时的例子中,传入的参数都是空指针,而不是指向pthread_attr_t结构的指针.可以使用pthread_attr_t结构修改线程默认属性,并把这些 ...