树链剖分【p3178】[HAOI2015]树上操作
Description
有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a 。操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
Input
第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1 行每行两个正整数 from, to , 表示该树中存在一条边 (from, to) 。再接下来 M 行,每行分别表示一次操作。其中第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
Output
对于每个询问操作,输出该询问的答案。答案之间用换行隔开。
明显的树剖裸题,不过没有一遍切掉就很可惜.
貌似只有边权转点权的时候需要判断\(x==y\)?
代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cctype>
#define int long long
#define R register
#define N 100008
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m,head[N],tot,f[N],son[N],size[N],depth[N];
struct cod{int u,v;}edge[N<<2];
inline void add(int x,int y)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
}
void dfs1(int u,int fa)
{
f[u]=fa;depth[u]=depth[fa]+1;size[u]=1;
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs1(edge[i].v,u);
size[u]+=size[edge[i].v];
if(son[u]==-1 or size[son[u]]<size[edge[i].v])
son[u]=edge[i].v;
}
}
int idx,dfn[N],fdfn[N],top[N];
void dfs2(int u,int t)
{
top[u]=t;dfn[u]=++idx;fdfn[idx]=u;
if(son[u]==-1)return;
dfs2(son[u],t);
for(R int i=head[u];i;i=edge[i].u)
{
if(dfn[edge[i].v])continue;
dfs2(edge[i].v,edge[i].v);
}
}
#define ls o<<1
#define rs o<<1|1
int tr[N<<2],tg[N<<2],a[N];
inline void up(int o){tr[o]=tr[ls]+tr[rs];}
inline void down(int o,int l,int r)
{
if(tg[o])
{
int mid=(l+r)>>1;
tg[ls]+=tg[o];tg[rs]+=tg[o];
tr[ls]+=(mid-l+1)*tg[o];
tr[rs]+=(r-mid)*tg[o];
tg[o]=0;
}
}
void build(int o,int l,int r)
{
if(l==r)
{
tr[o]=a[fdfn[l]];
return;
}
int mid=(l+r)>>1;
build(ls,l,mid);
build(rs,mid+1,r);
up(o);
}
void change(int o,int l,int r,int x,int y,int z)
{
if(x<=l and y>=r)
{
tg[o]+=z;
tr[o]+=(r-l+1)*z;
return;
}
down(o,l,r);
int mid=(l+r)>>1;
if(x<=mid)change(ls,l,mid,x,y,z);
if(y>mid) change(rs,mid+1,r,x,y,z);
up(o);
}
int query(int o,int l,int r,int x,int y)
{
if(x<=l and y>=r)return tr[o];
down(o,l,r);
int mid=(l+r)>>1,res=0;
if(x<=mid) res+=query(ls,l,mid,x,y);
if(y>mid)res+=query(rs,mid+1,r,x,y);
return res;
}
int tquery(int x,int y)
{
int fx=top[x],fy=top[y],res=0;
while(fx!=fy)
{
if(depth[fx]>depth[fy])
{
res+=query(1,1,idx,dfn[fx],dfn[x]);
x=f[fx];
}
else
{
res+=query(1,1,idx,dfn[fy],dfn[y]);
y=f[fy];
}
fx=top[x],fy=top[y];
}
if(dfn[x]>dfn[y])swap(x,y);
res+=query(1,1,idx,dfn[x],dfn[y]);
return res;
}
signed main()
{
in(n),in(m);memset(son,-1,sizeof son);
for(R int i=1;i<=n;i++)in(a[i]);
for(R int i=1,x,y;i<n;i++)
{
in(x),in(y);
add(x,y);add(y,x);
}
dfs1(1,0);dfs2(1,1);build(1,1,n);
for(R int opt,x,y;m;m--)
{
in(opt);
if(opt==1)
{
in(x),in(y);
change(1,1,n,dfn[x],dfn[x],y);
}
if(opt==2)
{
in(x),in(y);
change(1,1,n,dfn[x],dfn[x]+size[x]-1,y);
}
if(opt==3)
{
in(x);
printf("%lld\n",tquery(1,x));
}
}
}
树链剖分【p3178】[HAOI2015]树上操作的更多相关文章
- 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)
P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...
- P3178 [HAOI2015]树上操作
P3178 [HAOI2015]树上操作 思路 板子嘛,其实我感觉树剖没啥脑子 就是debug 代码 #include <bits/stdc++.h> #define int long l ...
- 洛谷P3178 [HAOI2015]树上操作 题解 树链剖分+线段树
题目链接:https://www.luogu.org/problem/P3178 这道题目是一道树链剖分的模板题. 但是在解决这道问题的同事刷新了我的两个认识: 第一个认识是:树链剖分不光可以处理链, ...
- 洛谷P3178 [HAOI2015]树上操作
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...
- LUOGU P3178 [HAOI2015]树上操作
传送门 解题思路 树链剖分裸题,线段树维护. 代码 #include<iostream> #include<cstdio> #include<cstring> #d ...
- P3178 [HAOI2015]树上操作 树链剖分
这个题就是一道树链剖分的裸题,但是需要有一个魔性操作___编号数组需要开longlong!!!震惊!真的神奇. 题干: 题目描述 有一棵点数为 N 的树,以点 为根,且树点有边权.然后有 M 个操作, ...
- 洛谷P3178 [HAOI2015]树上操作(线段树)
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...
- 洛谷 P3178 [HAOI2015]树上操作
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...
- 洛谷——P3178 [HAOI2015]树上操作
https://www.luogu.org/problem/show?pid=3178#sub 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 ...
- 【luogu P3178 [HAOI2015]树上操作】 题解
题目链接:https://www.luogu.org/problemnew/show/P3178 模板题 菜 #include <cstdio> #include <cstring& ...
随机推荐
- python tarfile模块打压缩包,arcname的用法
D:\szh\noses文件夹下有子文件夹和文件 with tarfile.open('E:\\szh.tar', "w") as tar: tar.add('D:\\ ...
- DWZ(J-UI)之路:错误
1:关于左侧点击会把右边小窗口替换掉,导致右边永远只有一个小窗口. 方法:因为缺少了这个—— <li><a href="/admin/demo/index" ta ...
- 孤荷凌寒自学python第二十五天初识python的time模块
孤荷凌寒自学python第二十五天python的time模块 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) 通过对time模块添加引用,就可以使用python的time模块来进行相关的时间操 ...
- HDU 4031 Attack (线段树)
成功袭击次数=所有袭击次数-成功防守次数 需要一个辅助pre来记录上一次袭击成功什么时候,对于每个查询,从上一次袭击成功开始,每隔t更新一次. 感觉这样做最坏时间复杂度是O(n^2),这里 说是O(q ...
- 利用nat.123实现SVN外网访问
背景: 在高效平台的合作中,我们用到了很多团队合作开发的工具,比如SVN.禅道.Confluence等等.有了这些工具,我们可以很好的进行团队合作交流.但同样有所限制,这些工具都是发布在局域网中,只能 ...
- bpf 指令集
58 struct bpf_insn { 59 __u8 code; /* opcode */ 60 __u8 dst_reg:4; /* dest register */ 61 __u8 src_r ...
- iOS大神班笔记04-View的加载
iOS开发中一个控制器创建View的过程(注意标注的地方): 1.通过storyboard加载 UIStoryboard的三个方法: + (UIStoryboard *)storyboardWithN ...
- 【bzoj1486】[HNOI2009]最小圈 分数规划+Spfa
题目描述 样例输入 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 样例输出 3.66666667 题解 分数规划+Spfa判负环 二分答案mid,并将所有边权减去mid,然后再判 ...
- HTML5 localStorage与document.domain设置问题
localStorage的写入和读取,不能跨子域,否则在一些移动端浏览器上,会出现读取不到的情况. 最近开发一个移动端的播放记录功能,在pc端和android版的chrome测试很顺利通过了,但后来进 ...
- [poj] 3180 the cow prom
原题 这是一道强连通分量板子题. 我们只用输出点数大于1的强连通分量的个数! #include<cstdio> #include<algorithm> #include< ...