Spark大数据处理 之 动手写WordCount
Spark是主流的大数据处理框架,具体有啥能耐,相信不需要多说。我们开门见山,直接动手写大数据界的HelloWorld:WordCount。
先上完整代码,看看咋样能入门。
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
object WordCount {
def main(args: Array[String]) {
val conf = new SparkConf()
conf.setAppName("WordCount")
val sc = new SparkContext(conf)
val file = "hdfs://127.0.0.1:9000/file.txt"
val lines = sc.textFile(file)
val words = lines.flatMap(_.split("\\s+"))
val wordCount = words.countByValue()
println(wordCount)
}
}
寥寥10多行代码,就已经完成了,比大家想象的要简单,完全看不出大数据背后的存储,分布式,容错处理,这就是Spark给我们带来的福利。
接下来我们逐步解析其中的核心概念。
Spark上下文
Spark集群的执行单位是Application,任何提交的任务都会产生一个Application。一个Application只会关联上一个Spark上下文,也就是SparkContext。构建SparkContext时可以传入Spark相关配置,也就是SparkConf,它可以用来指定Application的名称,任务需要的CPU核数/内存大小,调优需要的配置等等。
val conf = new SparkConf()
conf.setAppName("WordCount")
val sc = new SparkContext(conf)
这三行语句创建了一个Spark上下文,并且运行时这个Application的名字就叫WordCount。
弹性分布式数据集RDD
Spark中最主要的编程概念就是弹性分布式数据集 (resilient distributed dataset,RDD),它是元素的集合,划分到集群的各个节点上,可以被并行操作。RDD的创建可以从HDFS(或者任意其他支持Hadoop文件系统) 上的一个文件开始,或者通过转换Master中已存在的Scala集合而来。
val file = "hdfs://127.0.0.1:9000/file.txt"
val lines = sc.textFile(file)
这两行语句从hdfs文件中创建了叫lines的RDD,它的每个元素就对应文件中的每一行,有了RDD我们就可以通过它提供的各种API来完成需要的业务功能。
RDD提供的API分为两类:转换(Transformation)和动作(Action)。
转换
顾名思义,转换就是把一个RDD转换成另一个RDD。当然,光是拷贝产生一个新的RDD是没有太大意义的,这里的转换实际上是RDD中元素的映射和转换。有一点必须要注意的是,RDD是只读的,一旦执行转换,一定会生成一个新的RDD。
val words = lines.flatMap(_.split("\\s+"))
flatMap是RDD众多转换中的一种,它的功能是把源RDD中的元素映射成目的RDD中的0个或者多个元素。上面语句把以文本行为元素的RDD转换成了以单个单词为元素的RDD。
动作
“动作”就不好望文生义了,可以简单地理解成想要获得结果时调用的API。
val wordCount = words.countByValue()
countByValue就是一个“动作”,它的功能是统计RDD中每个元素出现的次数,最终得到一个元素及其出现次数的Map。
那究竟哪些API是转换,哪些是动作呢?有个很简单的判断准则:
提示:返回结果为RDD的API是转换,返回结果不为RDD的API是动作。
运行
要运行Spark任务,首先要把代码打成JAR包,额。。。这个不需要多言。
打包后,就只需在Spark集群上以命令行的方式用spark-submit提交就OK。
spark-submit --class "demo.WordCount" SparkDemo-1.0-SNAPSHOT.jar
其中demo.WordCount是main函数所在的ojbect,而SparkDemo-1.0-SNAPSHOT.jar就是打出来的jar包。
大数据处理,就这样入门了。
下一篇文章我们将来探讨WordCount是如何在集群中运行的,Spark究竟隐藏了些什么魔法。
推荐
查看《Spark大数据处理》系列文章,请进入YoyaProgrammer公众号,点击 核心技术,点击 Spark大数据处理。
分类 Spark大数据处理
优雅程序员 原创 转载请注明出处
Spark大数据处理 之 动手写WordCount的更多相关文章
- Spark大数据处理 之 从WordCount看Spark大数据处理的核心机制(1)
大数据处理肯定是分布式的了,那就面临着几个核心问题:可扩展性,负载均衡,容错处理.Spark是如何处理这些问题的呢?接着上一篇的"动手写WordCount",今天要做的就是透过这个 ...
- Spark大数据处理 之 从WordCount看Spark大数据处理的核心机制(2)
在上一篇文章中,我们讲了Spark大数据处理的可扩展性和负载均衡,今天要讲的是更为重点的容错处理,这涉及到Spark的应用场景和RDD的设计来源. Spark的应用场景 Spark主要针对两种场景: ...
- Spark大数据处理 之 RDD粗粒度转换的威力
在从WordCount看Spark大数据处理的核心机制(2)中我们看到Spark为了支持迭代和交互式数据挖掘,而明确提出了内存中可重用的数据集RDD.RDD的只读特性,再加上粗粒度转换操作形成的Lin ...
- 《Spark大数据处理:技术、应用与性能优化 》
基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 ...
- 《Spark大数据处理:技术、应用与性能优化》【PDF】 下载
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技 ...
- 《Spark大数据处理:技术、应用与性能优化》【PDF】
内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技 ...
- Spark大数据处理技术
全球首部全面介绍Spark及Spark生态圈相关技术的技术书籍 俯览未来大局,不失精细剖析,呈现一个现代大数据框架的架构原理和实现细节 透彻讲解Spark原理和架构,以及部署模式.调度框架.存储管理及 ...
- Spark大数据处理框架入门(单机版)
导读 引言 环境准备 安装步骤 1.下载地址 2.开始下载 3.解压spark 4.配置环境变量 5.配置 spark-env.sh 6.启动spark服务 7.测试spark stay hungry ...
- ceph hadoop spark 大数据处理
http://docs.ceph.com/docs/giant/cephfs/hadoop/ https://indico.cern.ch/event/524549/contributions/218 ...
随机推荐
- AllowsTransparency和WebBrowser兼容性问题解决方案
AllowsTransparency和System.Windows.Controls.WebBrowser兼容性问题,能看这篇文章,所以原因也不用多说:最根本的就是因为MS对win32底层的WebBr ...
- Facebook开源的JavaScript库:React
React是Facebook开源的JavaScript库,采用声明式范例,可以传递声明代码,最大限度地减少与DOM的交互. React是Facebook开源的JavaScript库,用于构建UI.你可 ...
- python对MySQL进行数据的插入、更新和删除之后需要commit,数据库才会真的有数据操作。(待日后更新)
今天在尝试用下面的python代码对MySQL进行数据的插入.更新和删除时, 突然发现代码执行成功, 通过代码查询也显示数据已经插入或更新, 但是当我在MySQL客户端通过SQL语句查询时, 数据库中 ...
- 系统监控磁盘分区 homework
作业一: 1) 开启Linux系统前添加一块大小为15G的SCSI硬盘 2) 开启系统,右击桌面,打开终端 3) 为新加的硬盘分区,一个主分区大小为5G,剩余空间给扩展分区,在扩展分区上划分1个逻辑分 ...
- How to recover destroyed ZFS storage pools
root@sol11ai:~# zpool status tank pool: tank state: ONLINE scan: resilvered 91K in 0h0m with 0 e ...
- 关于:cross_validation.scores
# -*- coding: utf-8 -*- """ Created on Wed Aug 10 08:10:35 2016 @author: Administrato ...
- 【转载】eclipse如何传递main参数
转自:http://blog.csdn.net/theblackbeard/article/details/52172048 在命令行窗口可以通过java +程序名 +参数1(空格)参数2(空格).. ...
- C++对二进制文件的操作实例
有5个学生的数据,要求: (1)将它们存放到磁盘文件中: (2)将磁盘文件中的第1,3,5个学生数据读入程序,并显示出来: (3)将第三个学生的数据修改后存回磁盘文件中的原有位置: (4)从磁盘文件读 ...
- 使用RSS提升DPDK应用的性能(转)
本文描述了RSS以及在DPDK中如何配置RSS达到性能提升和统一分发. 什么是RSS RSS(Receive Side Scaling)是一种能够在多处理器系统下使接收报文在多个CPU之间高效分发的网 ...
- p3584 [POI2015]LAS
传送门 分析 f[i][S](S∈[0,4])表示第iii个食物没有被选/左边选/右边选/同时选的状态是由哪一个状态转移来的 我们需要满足两个条件: 每个人只能选择一个 改变选择之后不会比当前获得热 ...