题目传送门

题意:求一颗树中所有点对(a,b)的路径长度,路径长度按照模3之后的值进行分类,最后分别求每一类的和

分析:树形DP

\(dp[i][j]\) 表示以 i 为根的子树中,所有子节点到 i 的路径长度模3等于 j 的路径之和

\(c[i][j]\) 表示以 i 为根的子树中,所有子节点到 i 的路径长度模3等于 j 的点数

\(ok[i][j]\) 表示以 i 为根的子树中,是否有子节点到 i 的路径长度模3等于 j

每次只考虑所有经过根 x 的路径,并且路径的一个端点在 x 的一颗子树上,另一个端点在 x 的另一颗子树上。(可以想到其他所有情况都可以在考虑 x 的子树结点或者是x的祖先结点时被考虑到)

假设当前枚举到 x 的子节点 y,之前遍历的子节点已经使得三个数组更新。那么我们假设要计算的路径的起点在 y ,要计算的路径的终点在之前遍历过的子节点中。

计算答案贡献:

关于x-y的连边的贡献为

\(c[x][a] * c[y][b] * edge\)

关于起点到 y 的所有路径长度的贡献为

\(c[x][a] * dp[y][b]\)

关于x到终点的所有路径长度的贡献为

\(c[y][b] * dp[x][a]\)

最终边权所属分类为\((a+b+edge) \% 3\) 累加到答案即可

关于更新 x

用 y 来更新 x

\(dp[x][(a+edge)\%3] += dp[y][a] + edge * c[y][a]\)

\(ok[x][(a+edge)\%3] = true\)

\(c[x][(a+edge)\%3] += c[y][a]\)

当然点分治也可以做,但是复杂度就不是很优秀了

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 10010;
const int M = 200010;
const ll mod = 1e9 + 7;
int head[N],ver[M],nxt[M],tot;
int x,y,n;
bool ok[N][3];
ll edge[M],z,dp[N][3],c[N][3];
ll ans[3];
void add(int x,int y,ll z){
ver[++tot] = y;edge[tot] = z;nxt[tot] = head[x];head[x] = tot;
}
void dfs(int x,int fa){
for(int i=head[x];i;i=nxt[i]){
int y = ver[i];
if(y == fa)continue;
dfs(y,x);
ll z = edge[i];
for(int j=0;j<3;j++){
for(int k=0;k<3;k++){
if(ok[x][j] && ok[y][k]){
ans[(j+k+z)%3] += (dp[x][j] * c[y][k]% mod + dp[y][k] * c[x][j] % mod) % mod;
ans[(j+k+z) % 3] += z * c[x][j] * c[y][k] % mod;
ans[(j+k+z)%3] %= mod;
}
}
}
for(int j=0;j<3;j++){
if(ok[y][j]){
dp[x][(j+z) % 3] += dp[y][j] + z * c[y][j] % mod;
dp[x][(j+z) % 3] %= mod;
c[x][(j+z)%3] += c[y][j];
ok[x][(j+z) % 3] = true;
}
}
}
}
int main(){
while(~scanf("%d",&n)){
ans[0] = ans[1] = ans[2] = 0;
tot = 0;
for(int i=1;i<=n;i++){
dp[i][0] = dp[i][1] = dp[i][2] = 0;
c[i][1] = c[i][2] = 0;
c[i][0] = 1;
ok[i][0] = true;
ok[i][1] = ok[i][2] = false;
head[i] = 0;
}
for(int i=1;i<n;i++){
scanf("%d%d%lld",&x,&y,&z);
x ++;
y ++;
add(x,y,z);
add(y,x,z);
}
dfs(1,0);
printf("%lld %lld %lld\n",ans[0] * 2 % mod,ans[1] * 2 % mod,ans[2] * 2 % mod);
}
return 0;
}

2019 沈阳网络赛 D Fish eating fruit ( 树形DP)的更多相关文章

  1. 2019icpc沈阳网络赛 D Fish eating fruit 树形dp

    题意 分别算一个树中所有简单路径长度模3为0,1,2的距离和乘2. 分析 记录两个数组, \(dp[i][k]\)为距i模3为k的子节点到i的距离和 \(f[i][k]\)为距i模3为k的子节点的个数 ...

  2. 2019 沈阳网络赛 Fish eating fruit

    这题看了三个月,终于过了,第一次看的时候没学树形DP,想用点分治但是不会 后来学了二次扫描,就有点想法了.... 这东西也真就玄学了吧... #include<iostream> #inc ...

  3. 2019沈阳网络赛B.Dudu's maze

    https://www.cnblogs.com/31415926535x/p/11520088.html 啊,,不在状态啊,,自闭一下午,,都错题,,然后背锅,,,明明这个简单的题,,, 这题题面不容 ...

  4. [2019沈阳网络赛D题]Dawn-K's water(点分治)

    题目链接 题意为求出树上任意点对的距离对3取余的和. 比赛上听到题意就知道是点分治了,但是越写越不对劲,交之前就觉得会T,果不其然T了.修修改改结果队友写了发dp直接就过了Orz. 赛后想了想维护的东 ...

  5. 【2019沈阳网络赛】G、Special necklace——自闭的物理题

    这道题让我差点怀疑自己高考没考过物理 题意中 he measures the resistance of any two endpoints of it, the resistance values ...

  6. 2019上海网络赛 F. Rhyme scheme 普通dp

    Rhyme scheme Problem Describe A rhyme scheme is the pattern of rhymes at the end of each line of a p ...

  7. 2019 上海网络赛 F Rhyme scheme (字典树DP)

    题目:https://nanti.jisuanke.com/t/41414 题意:求长度为n的第k个bell number  ,  就是第i位的选取范围在 1-(i-1)位的最大值 +1,第一位固定为 ...

  8. hdu6446 网络赛 Tree and Permutation(树形dp求任意两点距离之和)题解

    题意:有一棵n个点的树,点之间用无向边相连.现把这棵树对应一个序列,这个序列任意两点的距离为这两点在树上的距离,显然,这样的序列有n!个,加入这是第i个序列,那么这个序列所提供的贡献值为:第一个点到其 ...

  9. 2019沈阳网赛树形dp

    https://nanti.jisuanke.com/t/41403 2019沈阳网络赛D题 树形dp.一棵树,求任意两个点的距离之和.u-v和v-u算两次.两点之间的距离分为三类,模3等于0,1,2 ...

随机推荐

  1. nacos服务注册与发现原理解析

    前言:nacos 玩过微服务的想必不会陌生,它是阿里对于springcloud孵化出来的产品,用来完成服务之间的注册发现和配置中心,其核心作用我就不废话了 大致流程:每个服务都会有一个nacos cl ...

  2. 简单TCP服务器和TCP客户端源码(Golang)

    以下代码为服务端,非最终版代码,服务端可以接受多个客户端的请求,且所有消息会显示在服务端上,服务端无法发送消息: package main import ( "fmt" " ...

  3. Flutter 基础组件:状态管理

    前言 一个永恒的主题,"状态(State)管理",无论是在React/Vue(两者都是支持响应式编程的Web开发框架)还是Flutter中,他们讨论的问题和解决的思想都是一致的. ...

  4. SpringBoot整合Shiro完成验证码校验

    SpringBoot整合Shiro完成验证码校验 上一篇:SpringBoot整合Shiro使用Redis作为缓存 首先编写生成验证码的工具类 package club.qy.datao.utils; ...

  5. logback为不同的包或类指定输出日志文件

    对日志分割的常见需求是,需要按不同的等级进行输出,这个的配置方式类似如下,在appender节点内添加内容 <appender name="FILE-INFO" class= ...

  6. JavaScript入门-函数function(二)

    JavaScript入门-函数function(二) 递归函数 什么是递归函数? 递归简单理解就是,在函数体里,调用自己. //我们在求一个10的阶乘的时候,可能会这么做 //写一个循环 var to ...

  7. Java开发手册之安全规约

    1.用户敏感数据禁止直接展示,必须对展示数据进行脱敏.例如手机号.银行卡号等,中间要用*隐藏. 2.发贴.评论.发送即时消息等用户生成内容的场景必须实现防刷.文本内容违禁词过滤等风控策略,一般是用验证 ...

  8. SDUST数据结构 - chap4 串

    函数题: 6-1 查找子串: 裁判测试程序样例: #include <stdio.h> #define MAXS 30 char *search(char *s, char *t); vo ...

  9. openshift 3.11安装部署

    openshift 3.11 安装部署 openshift安装部署 1 环境准备(所有节点) openshift 版本 v3.11 1.1 机器环境 ip cpu mem hostname OSsys ...

  10. JS中常用的工具类

    一.日期工具类 /** * 日期时间工具类 * @type {{dateFormat}} */ var DateTime = function () { var patterns = { PATTER ...