The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

n C​1​​ C​2​​ ... C​n​​

where n is the number of cities in the list, and C​i​​'s are the cities on a path.

Output Specification:

For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

  • TS simple cycle if it is a simple cycle that visits every city;
  • TS cycle if it is a cycle that visits every city, but not a simple cycle;
  • Not a TS cycle if it is NOT a cycle that visits every city.

Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

Sample Input:

6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6
 

Sample Output:

Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8


#include<stdio.h>
#include<algorithm> using namespace std; int inf=9999999;
int G[500][500]; int main()
{
fill(G[0],G[0]+500*500,inf);
int vnum;
int edgenum;
scanf("%d %d",&vnum,&edgenum);
for(int i=0;i<edgenum;i++)
{
int id1,id2;
scanf("%d %d",&id1,&id2);
scanf("%d",&G[id1][id2]);
G[id2][id1]=G[id1][id2];
}
int checknum;
scanf("%d",&checknum);
int min=2*inf;
int minid=-1;
for(int i=0;i<checknum;i++)
{
int potnum;
scanf("%d",&potnum);
int seq[potnum];
int dis=0;
bool mark[1000];
fill(mark,mark+1000,0);
for(int j=0;j<potnum;j++)
{
scanf("%d",&seq[j]);
mark[seq[j]]=true;
if(j!=0) dis+=G[seq[j-1]][seq[j]];
}
if(dis>=inf) printf("Path %d: NA (Not a TS cycle)\n",i+1);
else if(seq[0]!=seq[potnum-1]||potnum<vnum+1) printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
else if(potnum>vnum+1)
{
int t;
for(t=1;t<=vnum;t++)
{
if(mark[t]==false) break;
}
if(t>vnum)
{
printf("Path %d: %d (TS cycle)\n",i+1,dis);
if(min>dis)
{
min=dis;
minid=i+1;
}
}
else printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
}
else if(seq[0]==seq[potnum-1])
{
int t;
for(t=1;t<=vnum;t++)
{
if(mark[t]==false) break;
}
if(t>vnum)
{
printf("Path %d: %d (TS simple cycle)\n",i+1,dis);
if(min>dis)
{
min=dis;
minid=i+1;
}
}
else
{
printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
} } }
printf("Shortest Dist(%d) = %d",minid,min); }

1150 Travelling Salesman Problem的更多相关文章

  1. PAT 甲级 1150 Travelling Salesman Problem

    https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384 The "travelling ...

  2. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  4. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  5. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  6. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

  7. PAT_A1150#Travelling Salesman Problem

    Source: PAT A1150 Travelling Salesman Problem (25 分) Description: The "travelling salesman prob ...

  8. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  9. PAT-1150(Travelling Salesman Problem)旅行商问题简化+模拟图+简单回路判断

    Travelling Salesman Problem PAT-1150 #include<iostream> #include<cstring> #include<st ...

随机推荐

  1. Docker-ce Centos8 笔记二:常见问题

  2. 【MyBatis】MyBatis CRUD

    MyBtis CRUD 文章源码 基于代理 DAO 的 CRUD 根据 ID 查询操作 在持久层接口中添加 findById 方法: public interface UserDAO { /** * ...

  3. GitHub README.md文本编写指南

    标题 在文字前写#,注意文字与#之间有一个空格 # 一级标题## 二级标题### 三级标题 以此类推或者用连续的减号或等号写在文字之下: 标题- 粗体斜体 **这个是粗体*这个是斜体****这个是粗体 ...

  4. 在 WPF 中使用 MahApps.Metro.IconPacks 提供的大量图标

    MahApps.Metro.IconPacks https://github.com/MahApps/MahApps.Metro.IconPacks 提供了大量的高质量的图标供WPF使用,极其方便. ...

  5. 【Linux】Centos7 安装redis最新稳定版及问题解决

    ------------------------------------------------------------------------------------------------- | ...

  6. 文件监控性能问题【BUG】

    文件监控性能问题[BUG] 背景:JAVA写了一个文件夹目录监控的程序,使用的是org.apache.commons.io.monitor 包,项目稳定运行了一个月,现场反馈,文件夹数据处理越来越慢, ...

  7. Windows DHCP最佳实践(四)

    这是Windows DHCP最佳实践和技巧的最终指南. 如果您有任何最佳做法或技巧,请在下面的评论中发布它们. 在本指南(四)中,我将分享以下DHCP最佳实践和技巧. 使用DHCP中继代理 防止恶意D ...

  8. MySQL查询截取分析

    一.查询优化 1,mysql的调优大纲 慢查询的开启并捕获 explain+慢SQL分析 show profile查询SQL在Mysql服务器里面的执行细节和生命周期情况 SQL数据库服务器的参数调优 ...

  9. kafka(三)原理剖析

    一.生产者消息分区机制原理剖析 在使用Kafka 生产和消费消息的时候,肯定是希望能够将数据均匀地分配到所有服务器上.比如很多公司使用 Kafka 收集应用服务器的日志数据,这种数据都是很多的,特别是 ...

  10. Java异常处理场景中不同位置的返回值详细解析

    Java 异常处理中的返回值在不同位置不同场景下是有一些差别的,这里需要格外注意 具体分以下两种场景: 1 finally语句块没有return语句,即当代码执行到try或者catch语句块中的ret ...