The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

n C​1​​ C​2​​ ... C​n​​

where n is the number of cities in the list, and C​i​​'s are the cities on a path.

Output Specification:

For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

  • TS simple cycle if it is a simple cycle that visits every city;
  • TS cycle if it is a cycle that visits every city, but not a simple cycle;
  • Not a TS cycle if it is NOT a cycle that visits every city.

Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

Sample Input:

6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6
 

Sample Output:

Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8


#include<stdio.h>
#include<algorithm> using namespace std; int inf=9999999;
int G[500][500]; int main()
{
fill(G[0],G[0]+500*500,inf);
int vnum;
int edgenum;
scanf("%d %d",&vnum,&edgenum);
for(int i=0;i<edgenum;i++)
{
int id1,id2;
scanf("%d %d",&id1,&id2);
scanf("%d",&G[id1][id2]);
G[id2][id1]=G[id1][id2];
}
int checknum;
scanf("%d",&checknum);
int min=2*inf;
int minid=-1;
for(int i=0;i<checknum;i++)
{
int potnum;
scanf("%d",&potnum);
int seq[potnum];
int dis=0;
bool mark[1000];
fill(mark,mark+1000,0);
for(int j=0;j<potnum;j++)
{
scanf("%d",&seq[j]);
mark[seq[j]]=true;
if(j!=0) dis+=G[seq[j-1]][seq[j]];
}
if(dis>=inf) printf("Path %d: NA (Not a TS cycle)\n",i+1);
else if(seq[0]!=seq[potnum-1]||potnum<vnum+1) printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
else if(potnum>vnum+1)
{
int t;
for(t=1;t<=vnum;t++)
{
if(mark[t]==false) break;
}
if(t>vnum)
{
printf("Path %d: %d (TS cycle)\n",i+1,dis);
if(min>dis)
{
min=dis;
minid=i+1;
}
}
else printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
}
else if(seq[0]==seq[potnum-1])
{
int t;
for(t=1;t<=vnum;t++)
{
if(mark[t]==false) break;
}
if(t>vnum)
{
printf("Path %d: %d (TS simple cycle)\n",i+1,dis);
if(min>dis)
{
min=dis;
minid=i+1;
}
}
else
{
printf("Path %d: %d (Not a TS cycle)\n",i+1,dis);
} } }
printf("Shortest Dist(%d) = %d",minid,min); }

1150 Travelling Salesman Problem的更多相关文章

  1. PAT 甲级 1150 Travelling Salesman Problem

    https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384 The "travelling ...

  2. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  4. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  5. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  6. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

  7. PAT_A1150#Travelling Salesman Problem

    Source: PAT A1150 Travelling Salesman Problem (25 分) Description: The "travelling salesman prob ...

  8. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  9. PAT-1150(Travelling Salesman Problem)旅行商问题简化+模拟图+简单回路判断

    Travelling Salesman Problem PAT-1150 #include<iostream> #include<cstring> #include<st ...

随机推荐

  1. Openstack dashboard 仪表盘服务 (八)

    Openstack dashboard 仪表盘服务 (八) # 说明: 这个部分将描述如何在控制节点上安装和配置仪表板.dashboard仅在核心服务中要求认证服务.你可以将dashboard与其他服 ...

  2. selenium自动化 | 实现抢课功能

    # -*- coding: utf-8 -*-"""Created on Wed Jan 1 23:39:34 2020@author: billie程序运行环境要求:- ...

  3. MySQL 使用sql添加和创建用户

    用户管理 SQL 命令操作 用户表:mysql.user 本质:对mysql.user 表进行增删改查 -- ============== 用户管理 ============= -- 创建用户 -- ...

  4. 【Oracle】Oracle 10g下载路径

    ORACLE 10g下载地址 下载方法: 直接复制下面的链接,打开迅雷,自动会识别下载的内容 Oracle Database 10g Release 2 (10.2.0.1.0) Enterprise ...

  5. Upload - Labs (上)

    Pass - 01: 1.尝试上传一个php文件:aaa.php,发现只允许上传某些图片类型,用bp抓包,发现http请求都没通过burp就弹出了不允许上传的提示框,这表明验证点在前端,而不在服务端 ...

  6. 使用smartform打印表单

    昨天写了个smartform打印表单,在开发完成,在测试机测试OK,传到生产机,出现严重问题!无法打印,干脆就是无法调用打印图形界面,进入SMARTFORM事物,查看这个表单,发现,居然公司的LOGO ...

  7. pandas DataFrame的新增行列,修改、删除、筛选、判断元素以及转置操作

    1)指定行索引和列索引标签 index 属性可以指定 DataFrame 结构中的索引数组,  columns 属性可以指定包含列名称的行, 而使用 name 属性,通过对一个 DataFrame 实 ...

  8. Jenkins 部署打包文件 并通过SSH上传到 linux服务器

    编译 发布 打包成zip文件 dotnet clean : dotnet的命令清除解决方案 dotnet build : dotnet的命令重新生成 dotnet publish .\Hy.MyDem ...

  9. Py-解决粘包现象,tcp实现并发,tcp实现传输文件的程序,校验思路,线程与进程

    黏包现象 TCP粘包就是指发送方发送的若干包数据到达接收方时粘成了一包,从接收缓冲区来看,后一包数据的头紧接着前一包数据的尾,出现粘包的原因是多方面的,可能是来自发送方,也可能是来自接收方TCP接收到 ...

  10. linux在终端中按下键盘立马反应

    想在终端中做个小应用,按下上下左右键能立刻作出反应. 测试程序见下: 1 #include <stdio.h> 2 #include <unistd.h> 3 #include ...