题目链接

P3387 【模板】缩点

解题思路

这几天搞图论,好有趣hhh,多写几篇博客。

上次学\(Tarjan\)求割点,这次缩点。

思路大概是多一个栈和染色的步骤,每次\(Tarjan\)的时候把点入栈,如果某个点(比较像割点但不完全是)的\(DFS\)子树都搜不到它祖宗,那么接下来进行的遍历操作必然与该点不能形成强连通分量,所以可以遇到\(low[p]==dfn[p]\)的点就把栈里面的东西全弹出来,染色表示这是一个强连通分量。

对于这个题,强连通分量之间再进行连边,记忆化搜索(类似树形DP)即可。

AC代码

#include<stdio.h>
#include<string.h>
#define N 100010
#define M 10010
#define min(a,b) (a>b?b:a)
#define max(a,b) (a<b?b:a)
int n,m;
int v[M],x[N],y[N]; struct Edge{
int end,near;
}e[N];
int head[M],cnt;
void add(int a,int b){
e[++cnt].end=b;
e[cnt].near=head[a];
head[a]=cnt;
} int dfn[M],tot,sta[M],top,vis[M],low[M];
int color[M],num,val[M];
void tarjan(int p){
dfn[p]=low[p]=++tot;
sta[++top]=p;vis[p]=1;
int i;
for(i=head[p];i;i=e[i].near){
int q=e[i].end;
if(!dfn[q])tarjan(q),low[p]=min(low[p],low[q]);
else if(vis[q])low[p]=min(low[p],low[q]);
}
if(dfn[p]==low[p]){
num++;
while(sta[top+1]!=p){
color[sta[top]]=num;
vis[sta[top]]=0;
val[num]+=v[sta[top]];
top--;
}
}
} int f[M];
void dp(int p){
int i;
for(i=head[p];i;i=e[i].near){
int q=e[i].end;
if(!f[q])dp(q);
f[p]=max(f[p],f[q]);
}
f[p]+=val[p];
} int main(){
int i,ans=0;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)scanf("%d",&v[i]);
for(i=0;i<m;i++)scanf("%d%d",&x[i],&y[i]),add(x[i],y[i]);
for(i=1;i<=n;i++)
if(!dfn[i])tarjan(i);//tarjan缩点
memset(head,0,sizeof(head));cnt=0;//清空边
for(i=0;i<m;i++)//强连通分量之间连边
if(color[x[i]]^color[y[i]])add(color[x[i]],color[y[i]]);
for(i=1;i<=num;i++)if(!f[i])dp(i),ans=max(ans,f[i]);//DP
printf("%d",ans);
return 0;
}

P3387 【模板】缩点 题解 (Tarjan)的更多相关文章

  1. 洛谷P3387 【模板】缩点 题解

    背景 今天\(loj\)挂了,于是就有了闲情雅致来刷\(luogu\) 题面 洛谷P3387 [模板]缩点传送门 题意 给定一个\(n\)个点\(m\)条边有向图,每个点有一个权值,求一条路径,使路径 ...

  2. 【Luogu P3387】缩点模板(强连通分量Tarjan&拓扑排序)

    Luogu P3387 强连通分量的定义如下: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶 ...

  3. 【模板】缩点(Tarjan算法)/洛谷P3387

    题目链接 https://www.luogu.com.cn/problem/P3387 题目大意 给定一个 \(n\) 个点 \(m\) 条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之 ...

  4. Tarjan+topsort(DP)【P3387】 [模板]缩点

    Description 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次 ...

  5. 【Luogu】P3387缩点(Tarjan缩点+深搜DP)

    题没什么好说的,因为是模板题.求值我用的是dfs. 不能直接在原图上dfs,因为原图上有环的话会发生一些滑稽的事情.所以我们要用Tarjan缩点.因为此题点权全为正,所以如果在图上走一个环当然可以全走 ...

  6. POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)

    Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...

  7. Luogu3387 缩点 【tarjan】【DP】

    Luogu3387 缩点 题目背景 缩点+DP 题目描述 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点, ...

  8. poj3694+hdu2460 求桥+缩点+LCA/tarjan

    这个题使我更深理解了TARJAN算法,题意:无向图,每添加一条边后文桥的数量,三种解法:(按时间顺序),1,暴力,每每求桥,听说这样能过,我没过,用的hash判重,这次有俩个参数(n->10w, ...

  9. P1177 【模板】快速排序 题解

    本质为sort,这里我们用优先队列(堆)解决. 什么是堆? 堆 堆是一个完全二叉树,而且是每层都有规律的二叉树 规律大概是: 小根堆:最上层数的大小最小,往下每层结点都比父亲结点大,比两个儿子结点小 ...

随机推荐

  1. C - 可变参函数与可变参宏

    一.可变宏 1.# 可以接收一个参数,并把这个参数按照原来的字符串源码原样传给宏内部: 1 #define RR(x) printf(#x"\n"); 2 int main(){ ...

  2. ArcGIS处理栅格数据(一)

    一.建立影像金字塔 ArcToolbox--数据管理工具--栅格--栅格属性--构建金字塔(pyramid) 说明:该方式一次只能为一张影像数据建立影像金字塔. ArcToolbox--数据管理工具- ...

  3. js的变量,作用域,内存

    一,基本类型和引用类型的值基本类型的值是按值访问的,引用类型的值是保存在内存中的对象1,动态的属性 只有引用类型的值可以添加属性方法 不能给基本类型添加属性和方法2,复制变量值 复制基本类型的值,两个 ...

  4. Bootstrap 中的 aria-label 和 aria-labelledby

    正常情况下,form表单的input组件都有对应的label.当input组件获取到焦点时,屏幕阅读器会读出相应的label里的文本. <form> <div class=" ...

  5. Lenet车牌号字符识别+保存模型

    # 部分函数请参考前一篇或后一篇文章 import tensorflow as tf import tfrecords2array import numpy as np import matplotl ...

  6. element-ui select get selected option object

    element-ui select get selected option object value-key="value" === String :value="{va ...

  7. how to create a style element in js (many ways)

    how to create a style element in js (many ways) create style in js Constructed StyleSheets CSSStyleS ...

  8. Node.js Learning Paths

    Node.js Learning Paths Node.js in Action Node.js Expert situations / scenario Restful API OAuth 2.0 ...

  9. js replace all & replaceAll

    js replace all & replaceAll https://scotch.io/tutorials/javascript-replace-all-instances-of-a-st ...

  10. Flutter: MobX和flutter_mobx状态管理器

    MobX.dart网站上的 " 入门指南" mobxjs video 组织Stores 安装依赖 dependencies: mobx: flutter_mobx: dev_dep ...