Problem Description
There is a sequence firstly empty. We begin to add number from 1 to N to the sequence, and every time we just add a single number to the sequence at a specific position. Now, we want to know length of the LIS (Longest Increasing Subsequence)
after every time's add.
 

Input
An integer T (T <= 10), indicating there are T test cases.

For every test case, an integer N (1 <= N <= 100000) comes first, then there are N numbers, the k-th number Xk means that we add number k at position Xk (0 <= Xk <= k-1).See hint for more details.
 

Output
For the k-th test case, first output "Case #k:" in a separate line, then followed N lines indicating the answer. Output a blank line after every test case.
 

Sample Input

1
3
0 0 2
 

Sample Output

Case #1:
1
1
2

Hint

In the sample, we add three numbers to the sequence, and form three sequences.
a. 1
b. 2 1
c. 2 1 3

这题看了别人的题解,最后看懂了。题意是从1~n,一次插入位置,然后每插入一个数求出它的最长递增子序列(不连续)。可以用线段树先求出每个数所在的位置,可以从后往前,因为每次最后一个数的位置一定是固定的。然后就是二分法的lis了,这里如果继续用线段树求lis的话会超时的。
这里二分的lis之前一直看不懂,其实因为输入的数是一次增大的,所以每次只要记录这个数的位置,然后二分找到最接近但大于当前数的位置,然后替换掉找到的数。
这题我对二分又有了新的认识,二分模板不是固定的,而是根据题目意思决定最后返回的值是l还是r.
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define maxn 100005
int a[maxn],ans[maxn],dp[maxn];
struct node{
int l,r,n;
}b[4*maxn]; void build(int l,int r,int i)
{
int mid;
b[i].l=l;b[i].r=r;b[i].n=r-l+1;
if(l==r)return;
mid=(l+r)/2;
build(l,mid,i*2);
build(mid+1,r,i*2+1);
} void update(int index,int m,int i)
{
int mid;
if(b[i].l==b[i].r){
b[i].n=0;ans[m]=b[i].l;return;
}
if(b[i*2].n>=index) update(index,m,i*2);
else update(index-b[i*2].n,m,i*2+1);
b[i].n=b[i*2].n+b[i*2+1].n;
} int find(int l,int r,int x)
{
int mid;
while(l<=r){
mid=(l+r)/2;
if(dp[mid]>x){
r=mid-1;
}
else l=mid+1;
}
return r+1; //这里也可以是l,可以草稿纸上画一下
} int main()
{
int n,m,i,j,h,T,k,len; //len表示最长递增子序列
scanf("%d",&T);
for(h=1;h<=T;h++)
{
printf("Case #%d:\n",h);
scanf("%d",&n);
for(i=1;i<=n;i++){scanf("%d",&a[i]);dp[i]=0;}
build(1,n,1);
for(i=n;i>=1;i--){
update(a[i]+1,i,1);
}
len=0;
for(i=1;i<=n;i++){
if(len==0){
dp[++len]=ans[1]; //ans[]表示i所在的位置
printf("%d\n",len);
continue;
}
k=find(1,len,ans[i]);
len=max(len,k); //不管这n个数排列顺序怎样,每一次的最长递增子序列一定是递增的,可以画一下。
dp[k]=ans[i]; //dp[k]表示最长递增序列中的第k个数,用到了单调队列的思想
printf("%d\n",len);
}
printf("\n");
}
return 0;
}

hdu3564 Another LIS的更多相关文章

  1. HDU3564 --- Another LIS (线段树维护最值问题)

    Another LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  2. BZOJ3173:[TJOI2013]最长上升子序列 & HDU3564:Another LIS——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3173 http://acm.hdu.edu.cn/showproblem.php?pid=3564 ...

  3. Lis日常维护

    1.[问题]护士站打印LIs条码,出来是PDF格式的 [解决]在文件夹Client\NeusoftLis\Xml\Print.xml中把BarcodePrint Name的值改成安装的斑马打印机名(不 ...

  4. uva10635 LIS

    Prince and PrincessInput: Standard Input Output: Standard Output Time Limit: 3 Seconds In an n x n c ...

  5. Codeforces 486E LIS of Sequence 题解

    题目大意: 一个序列,问其中每一个元素是否为所有最长上升子序列中的元素或是几个但不是所有最长上升子序列中的元素或一个最长上升子序列都不是. 思路: 求以每一个元素为开头和结尾的最长上升子序列长度,若两 ...

  6. 出操队形(LIS)

    题目来源:微策略2013年校园招聘面试一面试题 题目描述: 在读高中的时候,每天早上学校都要组织全校的师生进行跑步来锻炼身体,每当出操令吹响时,大家就开始往楼下跑了,然后身高矮的排在队伍的前面,身高较 ...

  7. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  8. [tem]Longest Increasing Subsequence(LIS)

    Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...

  9. 从LIS问题浅谈动态规划

    今天以LIS问题切入动态规划,现在做一些简单的总结. LIS问题: http://www.cnblogs.com/Booble/archive/2010/11/27/1889482.html

随机推荐

  1. ArrayList源码解析--值得深读

    ArrayList源码解析 基于jdk1.8 ArrayList的定义 类注释 允许put null值,会自动扩容: size isEmpty.get.set.add等方法时间复杂度是O(1): 是非 ...

  2. MySQL select 子查询的使用

    ### 子查询 >where 这个值是计算出来的 >本质:`在 where 语句中嵌套一个子查询语句` ```sql /*============== 子查询 ============== ...

  3. Java并发/多线程-CAS原理分析

    目录 什么是CAS 并发安全问题 举一个典型的例子i++ 如何解决? 底层原理 CAS需要注意的问题 使用限制 ABA 问题 概念 解决方案 高竞争下的开销问题 什么是CAS CAS 即 compar ...

  4. APP测试之Monkey测试

    一.简介 1.什么是Monkey测试? Monkey testing,也有人叫做搞怪测试.就是用一些稀奇古怪的操作方式去测试被测试系统,以测试系统的稳定性.Monkeytest,一般指这样的测试活动, ...

  5. 利用sql_tuning_Advisor调优sql

    1.赋权给调优用户 grant ADVISOR to xxxxxx; 2.创建调优任务 使用sql_text创建 DECLARE my_task_name VARCHAR2 (30); my_sqlt ...

  6. CALL TRANSACTION 使用说明

    以调用事务VA03为例: 在程序中添加如下代码就可以实现  SET PARAMETER ID 'AUN' FIELD var. CALL TRANSACTION 'VA03' AND SKIP FIR ...

  7. 24V转3.3V芯片,同步降压调节器

    PW2312是一个高频,同步,整流,降压,开关模式转换器与内部功率MOSFET.它提供了一个非常紧凑的解决方案,以实现1.5A的峰值输出电流在广泛的输入电源范围内,具有良好的负载和线路调节. PW23 ...

  8. EL&Filter&Listener:EL表达式和JSTL,Servlet规范中的过滤器,Servlet规范中的监听器,观察着设计模式,监听器的使用,综合案例学生管理系统

    EL&Filter&Listener-授课 1 EL表达式和JSTL 1.1 EL表达式 1.1.1 EL表达式介绍 *** EL(Expression Language):表达式语言 ...

  9. Linux的环境变量配置在/etc/profile或/etc/profile.d/*.sh文件中的区别是什么?

    @ 目录 login shell non-login shell 它们的区别 Linux的环境变量可在多个文件中配置,如/etc/profile,/etc/profile.d/*.sh,~/.bash ...

  10. IPC图像处理项目流程图

    网络摄像机IPC图像处理项目流程图: