过滤法总结

到这里我们学习了常用的基于过滤法的特征选择,包括方差过滤,基于卡方,F检验和互信息的相关性过滤,讲解了各个过滤的原理和面临的问题,以及怎样调这些过滤类的超参数。
通常来说,我会建议,先使用方差过滤,然后使用互信息法来捕捉相关性,不过了解各种各样的过滤方式也是必要的。所有信息被总结在下表,大家自取:

机器学习实战基础(十六):sklearn中的数据预处理和特征工程(九)特征选择 之 Filter过滤法(三) 总结的更多相关文章

  1. 机器学习实战基础(八):sklearn中的数据预处理和特征工程(一)简介

    1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字 ...

  2. sklearn中的数据预处理和特征工程

    小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...

  3. 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤

    Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...

  4. 机器学习实战基础(十八):sklearn中的数据预处理和特征工程(十一)特征选择 之 Wrapper包装法

    Wrapper包装法 包装法也是一个特征选择和算法训练同时进行的方法,与嵌入法十分相似,它也是依赖于算法自身的选择,比如coef_属性或feature_importances_属性来完成特征选择.但不 ...

  5. 机器学习实战基础(十七):sklearn中的数据预处理和特征工程(十)特征选择 之 Embedded嵌入法

    Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行.在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大 ...

  6. 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值

    缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...

  7. 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤

    相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...

  8. 机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介

    当数据预处理完成后,我们就要开始进行特征工程了. 在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人, ...

  9. 机器学习实战基础(十一):sklearn中的数据预处理和特征工程(四) 数据预处理 Preprocessing & Impute 之 处理分类特征:编码与哑变量

    处理分类特征:编码与哑变量 在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fit的 ...

  10. 机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化

    1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回 ...

随机推荐

  1. 开发小白可以一年涨薪10w?这份java文档功不可没,学透你也可以

    靠这份文档,跳槽涨薪10K 金九银十的时候我分享了一份面试文档给我的兄弟,没想到这哥们2个月之内斩获数个BAT的offer, 最后选择了一个他最想要去的公司,既然有这么好的效果,我就打算把这份文档分享 ...

  2. JPA 中 find() 和 getReference() 的区别

    在查询的时候有两个方法:find()和getReference(),这两个方法的参数以及调用方式都相同.那么这两个方法有什么不一样的呢? find()称为 立即加载,顾名思义就是在调用的时候立即执行查 ...

  3. Seafile的配置

    如果部署在apache或nginx后面,就是访问默认80或443.反向代理会帮你转到8000和8082上. 我使用443,我在路由器上设定了转发,比如 对外网12323这个端口会转到内网地址443上 ...

  4. JDBC——使用JDBC连接MySQL数据库

    在JDBC--什么是JDBC一文中我们已经介绍了JDBC的基本原理. 这篇文章我们聊聊如何使用JDBC连接MySQL数据库. 一.基本操作 首先我们需要一个数据库和一张表: CREATE DATABA ...

  5. uni-app之实现分页

    一.下载库 官方文档地址为:https://ext.dcloud.net.cn/plugin?id=32 点击下载zip压缩包即可,下载完毕后解压到放置前端相关组件目录,即components目录. ...

  6. Shiro密码重试次数限制

    如在 1 个小时内密码最多重试 5 次,如果尝试次数超过 5 次就锁定 1 小时,1 小时后可再次重试,如果还是重试失败,可以锁定如 1 天,以此类推,防止密码被暴力破解.我们通过继承 HashedC ...

  7. OpenCV开发笔记(六十五):红胖子8分钟带你深入了解ORB特征点(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  8. StringEscapeUtils防止xss攻击详解

    StringUtils和StringEscapeUtils这两个实用类. 1.转义防止xss攻击 1.转义可以分为下面的几种情况 第一用户输入特殊字符的时候,在提及的时候不做任何处理保持到数据库,当用 ...

  9. 05.DBUnit的使用

    相信做过单元测试的人都会对JUnit 非常的熟悉了,今天要介绍的DbUnit(http://dbunit.sourceforge.net/ ) 则是专门针对数据库测试的对JUnit 的一个扩展,它可以 ...

  10. Python函数参数详解

    Python函数参数详解 形参与实参 什么是形参 在定义函数阶段定义的参数称之为形式参数,简称形参,相当于变量名. 什么是实参 在调用函数阶段传入的值称为实际参数,简称实参.相当于"变量值& ...