为什么堆化 heapify() 只用 O(n) 就做到了?
heapify()
前面两篇文章介绍了什么是堆以及堆的两个基本操作,但其实呢,堆还有一个大名鼎鼎的非常重要的操作,就是 heapify()
了,它是一个很神奇的操作,
可以用 O(n)
的时间把一个乱序的数组变成一个 heap。
但是呢,heapify()
并不是一个 public API,看:
所以我们没有办法直接使用。
唯一使用 heapify()
的方式呢,就是使用
PriorityQueue(Collection<? extends E> c)
这个 constructor 的时候,人家会自动调用 heapify() 这个操作。
那具体是怎么做的呢?
哈哈源码已经暴露了:
从最后一个非叶子节点开始,从后往前做 siftDown()
.
因为叶子节点没必要操作嘛,已经到了最下面了,还能和谁 swap?
举个例子:
我们想把这个数组进行 heapify()
操作,想把它变成一个最小堆,拿到它的最小值。
那就要从 3 开始,对 3,7,5进行 siftDown()
.
Step 1.
尴尬 ,3 并不用交换,因为以它为顶点的这棵小树已经满足了堆序性。
Step 2.
7 比它的两个孩子都要大,所以和较小的那个交换一下。
交换完成后;
Step 3.
最后一个要处理的就是 5 了,那这里 5 比它的两个孩子都要大,所以也和较小的那个交换一下。
换完之后结果如下,注意并没有满足堆序性,因为 4 还比 5 小呢。
所以接着和 4 换,结果如下:
这样整个 heapify()
的过程就完成了。
好了难点来了,为什么时间复杂度是 O(n) 的呢?
怎么计算这个时间复杂度呢?
其实我们在这个过程里做的操作无非就是交换交换。
那到底交换了多少次呢?
没错,交换了多少次,时间复杂度就是多少。
那我们可以看出来,其实同一层的节点最多交换的次数都是相同的。
那么这个总的交换次数 = 每层的节点数 * 每个节点最多交换的次数
这里设 k 为层数,那么这个例子里 k=3.
每层的节点数是从上到下以指数增长:
$$\ce{1, 2, 4, ..., 2^{k-1}}$$
每个节点交换的次数,
从下往上就是:
$$ 0, 1, ..., k-2, k-1 $$
那么总的交换次数 S(k) 就是两者相乘再相加:
$$S(k) = \left(2^{0} *(k-1) + 2^{1} *(k-2) + ... + 2^{k-2} *1 \right)$$
这是一个等比等差数列,标准的求和方式就是错位相减法。
那么
$$2S(k) = \left(2^{1} *(k-1) + 2^{2} *(k-2) + ... + 2^{k-1} *1 \right)$$
两者相减得:
$$S(k) = \left(-2^{0} *(k-1) + 2^{1} + 2^{2} + ... + 2^{k-2} + 2^{k-1} \right)$$
化简一下:
(不好意思我实在受不了这个编辑器了。。。
所以 heapify()
时间复杂度是 O(n)
.
以上就是堆的三大重要操作,最后一个 heapify()
虽然不能直接操作,但是堆排序中用到了这种思路,之前的「选择排序」那篇文章里也提到了一些,感兴趣的同学可以后台回复「选择排序」获得文章~至于堆排序的具体实现和应用,以及为什么实际生产中并不爱用它,我们之后再讲。
如果你喜欢这篇文章,记得给我点赞留言哦~你们的支持和认可,就是我创作的最大动力,我们下篇文章见!
我是小齐,纽约程序媛,终生学习者,每天晚上 9 点,云自习室里不见不散!
更多干货文章见我的 Github: https://github.com/xiaoqi6666/NYCSDE
为什么堆化 heapify() 只用 O(n) 就做到了?的更多相关文章
- lintcode: 堆化
堆化 给出一个整数数组,堆化操作就是把它变成一个最小堆数组. 对于堆数组A,A[0]是堆的根,并对于每个A[i],A [i * 2 + 1]是A[i]的左儿子并且A[i * 2 + 2]是A[i]的右 ...
- Java实现的二叉堆以及堆排序详解
一.前言 二叉堆是一个特殊的堆,其本质是一棵完全二叉树,可用数组来存储数据,如果根节点在数组的下标位置为1,那么当前节点n的左子节点为2n,有子节点在数组中的下标位置为2n+1.二叉堆类型分为最大堆( ...
- Java并发包源码学习系列:阻塞队列实现之PriorityBlockingQueue源码解析
目录 PriorityBlockingQueue概述 类图结构及重要字段 什么是二叉堆 堆的基本操作 向上调整void up(int u) 向下调整void down(int u) 构造器 扩容方法t ...
- Java数据结构和算法(五)二叉排序树(BST)
Java数据结构和算法(五)二叉排序树(BST) 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 二叉排序树(Binary S ...
- Java同步数据结构之PriorityBlockingQueue
前言 接下来继续BlockingQueue的另一个实现,优先级阻塞队列PriorityBlockingQueue.PriorityBlockingQueue是一个无限容量的阻塞队列,由于容量是无限的所 ...
- 两种建立堆的方法HeapInsert & Heapify
参考 堆排序中两种建堆方法的比较 第一种方法HeapInsert 它可以假定我们事先不知道有多少个元素,通过不断往堆里面插入元素进行调整来构建堆. 它的大致步骤如下: 首先增加堆的长度,在最末尾的地方 ...
- 索引堆(Index Heap)
首先我们先来看一个由普通数组构建的普通堆. 然后我们通过前面的方法对它进行堆化(heapify),将其构建为最大堆. 结果是这样的: 对于我们所关心的这个数组而言,数组中的元素位置发生了改变.正是因为 ...
- lintcode-130-堆化
130-堆化 给出一个整数数组,堆化操作就是把它变成一个最小堆数组. 对于堆数组A,A[0]是堆的根,并对于每个A[i],A [i * 2 + 1]是A[i]的左儿子并且A[i * 2 + 2]是A[ ...
- 数据结构中的堆(Heap)
堆排序总结 这是排序,不是查找!!!查找去找二叉排序树等. 满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树. 构建顶堆: a.构造初始堆 b.从最后一层非叶节点开始调整,一直到根节点 c.如果 ...
随机推荐
- adb安装apk包提示protocol failure问题
截图来自CSDN,待验证
- python中一次性input3个整数,并用空格隔开怎么表示
a,b,c=map(int,input('请输入3个整数用空格隔开:').split(' ')) map的使用方法:map(函数名,循环体)
- get、post请求方式区别
1.get请求只有请求头,没有请求体,它的参数只能写在url里面,post请求数据放在请求体里面 (HTTP协议:两台电脑交互url请求头Request Headers:一些额外的信息,比如用的什么浏 ...
- xss中shellcode的调用
shellcode就是利用漏洞所执行的代码 在完整的xss攻击之中,会将shellcode存放在一定的地方,然后触发漏洞,引发shellcode. 1.远程调用执行js 可将js代码单独放在一个js文 ...
- Mybatis的Mapper中的方法为什么不能重载?
目录 前言 环境配置 错误示范 为什么不能重载? 如何找到XML中对应的SQL? 总结 前言 在初入门Mybatis的时候可能都犯过一个错误,那就是在写Mapper接口的时候都重载过其中的方法,但是运 ...
- rocketmq-console修改logo,修改ip,修改port及完整编译安装图文版
一.下载源码到本地 这里使用IDEA,作为编译工具 https://gitee.com/mrliuNumberOne/rocketmq-externals.git 导入成功后如图: 二.Maven编译 ...
- 最火的开源 IDE介绍与安装教程
导读:开发C/C++最好的IDE是什么,尤其对于很多初学者来说用什么IDE比较容易上手,本文将做以介绍,并为您演示如何下载与安装. 本文字数:1015,阅读时长大约:10分钟 (一)最火的开源IDE ...
- 使用vue-cli(vue脚手架)快速搭建项目
vue-cli 是一个官方发布 vue.js 项目脚手架,使用 vue-cli 可以快速创建 vue 项目.这篇文章将会从实操的角度,介绍整个搭建的过程. 1. 避坑前言 其实这次使用vue-cli的 ...
- 基本的PID算法整理(水缸的例子有问题!!)
一,先谈关于水缸漏水的问题 谈到PID原理入门的时候,大家经常会举的一个例子就是水缸漏水的例子.这里把一个解释水缸漏水的帖子放在这里:https://blog.csdn.net/qq_41736609 ...
- 关于消息中间件ActiveMQ的企业级应用
几个月前看到项目中配置了activeMq,于是想通透的掌握activeMq,便去网上学习搜寻资料,找到这一篇博客挺不错的,解释的比较清楚,包括原理使用和配置,特此把它分享给大家. 众所周知,消息中间件 ...