【二分图】HEOI2012 朋友圈
题目内容
洛谷链接
在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着。
一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最大数目。两个国家看成是AB两国,现在是两个国家的描述:
\(A\)国:每个人都有一个友善值,当两个\(A\)国人的友善值\(a,b\),如果\(a\text{ xor}\text{ }b \bmod 2=1\),那么这两个人都是朋友,否则不是;
\(B\)国:每个人都有一个友善值,当两个\(B\)国人的友善值\(a,b\),如果\(a\text{ xor}\text{ }b \bmod 2=0\)或者(\(a\text{ or}\text{ }b\))化成二进制有奇数个\(1\),那么两个人是朋友,否则不是朋友;
\(A、B\)两国之间的人也有可能是朋友,数据中将会给出\(A、B\)之间“朋友”的情况。 对于朋友的定义,关系是是双向的。 在AB两国,朋友圈的定义:一个朋友圈集合 \(S\),满足\(S\subset A \cup B\),对于所有的\(i,j \in S\),\(i\)和\(j\)是朋友。
由于落后的古代,没有电脑这个也就成了每年最大的难题,而你能帮他们求出最大朋友圈的人数吗?
输入格式
第一行一个整数\(T(T\leq 6)\),表示输入数据总数。
对于每组数据:
第一行三个整数 \(A,B,M\),分别表示\(A\)国人数,\(B\)国人数,\(AB\)两国之间是朋友的对数。
第二行\(A\)个数\(a_i\),表示A国第\(i\)个人的友善值。
第三行\(B\)个数\(b_i\),表示B国第\(i\)个人的友善值。
第\(4\)到第\(3+M\)行,每行两个整数\(x,y\)表示\(A\)国的第\(x\)个人和\(B\)国第\(y\)个人是朋友。
输出格式
输出\(T\)行,每行输出一个整数,表示最大朋友圈的数目。
数据范围
友善值为int
类型正整数。
有两类数据:
第一类:\(|A| \leq 200, |B| \leq 200\);
第二类:\(|A| \leq 10, |B| \leq 3000\)。
样例输入
1
2 4 7
1 2
2 6 5 4
1 1
1 2
1 3
2 1
2 2
2 3
2 4
样例输出
5
最大朋友圈包含\(A\)国第\(1,2\)人和\(B\)国第\(1,2,3\)人。
思路
先吐槽:因为按位异或和按位与的优先级调这个破题一下午,谢谢有被恶心到。
此题一看就可知道是一个求最大团的问题,然而一般无向图的求最大团是一个\(NPC\)问题,况且看到其数据范围就可以弃了。所以我们要分析一下其中的性质。
先看\(B\)国,可以看出其为一些奇数点和偶数点,况且其中存在一些连边。是二分图既视感。不过二分图是两边的部点不存在连边,所以我们需要建一个关于\(B\)国的补图。同时补图的最大独立集就是原图的最大团,于是\(B\)国直接建补图跑最大独立集即可。
再看\(A\)国,其要求可理解为选出的人要求两两奇偶不同,所以\(A\)国只能选出\(0、1、2\)人,再看\(B\)国中和这几个人有关系的跑最大独立集,我们直接暴力把所有情况取个\(\max\)即可,记得最大独立集\(=n-\)最大匹配数。
然后你快乐的连边之后一顿非常巨的操作跑匈牙利写完了发现\(T\)了几个点。(然后并不会\(Dinic\)),所以这时候就需要时间戳优化匈牙利。
匈牙利中占了时间效率很大的一块就是memset
,每次都要memset
理论每次都是\(O(n)\)的效率(当然肯定要小一点),那么每匹配一次都是\(O(n^2m)\)的,这个题要求多次匹配岂不是直接挂了。
所以时间戳优化出现了!其实根本没那么高深,设一个时间戳为\(\text{Clock}\),原来的布尔类型数组就改为整数类型,转化如下:
\]
\]
每次Clock++
,即可\(O(1)\)初始化。
然后就愉快的跑就完事了才不,这个毒瘤出题人居然卡常(可能只有我/kk),跑匈牙利的函数里的那个循环必须加register
才能过(大数据居然快了\(\text{200ms}\)),否则卡线\(TLE\)。
其他没啥了。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn=3000+10;
const int maxm=2e6+10;
int totA,totB,M,ans=-1;
int a[maxn],b[maxn];
bool g[maxn][maxn];
struct Edge{
int from,to,nxt;
}e[maxm];
inline int read(){
int x=0,fopt=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')fopt=-1;
ch=getchar();
}
while(isdigit(ch)){
x=(x<<3)+(x<<1)+ch-48;
ch=getchar();
}
return x*fopt;
}
int head[maxm],cnt;
inline void add(int u,int v){
e[++cnt].from=u;
e[cnt].to=v;
e[cnt].nxt=head[u];
head[u]=cnt;
}
int Time1,Time2;//时间戳,一个用于vis数组,一个用于标记朋友关系
int vis[maxn],match[maxn],flag[maxn];
bool dfs(int u){
for(register int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(vis[v]!=Time1&&flag[v]==Time2){
vis[v]=Time1;
if(!match[v]||dfs(match[v])){
match[v]=u;
return 1;
}
}
}
return 0;
}
inline int Count(int x){//数二进制1的个数
int res=0;
while(x){
if(x&1)res++;
x>>=1;
}
return res;
}
inline void SolveA(){
int sum=0;
for(int i=1;i<=totB;i++)
if(b[i]&1){
Time1++;
if(dfs(i))sum++;
}//选0个,直接对B跑匹配
ans=max(ans,totB-sum);
for(int i=1;i<=totA;i++){
int tot=0;sum=0;Time2++;
memset(match,0,sizeof(match));
for(int j=1;j<=totB;j++)
if(g[i][j+totA]){
flag[j]=Time2;tot++;//是朋友则flag[j]=1
}
for(int j=1;j<=totB;j++)
if((b[j]&1)&&flag[j]==Time2){
Time1++;
if(dfs(j))sum++;
}
ans=max(ans,tot-sum+1);//选1个,记得加上选的那个1
}
for(int i=1;i<=totA;i++)
for(int j=i+1;j<=totA;j++){
if((a[i]^a[j])&1){//记得打括号!调了一下午/kk
int tot=0;sum=0;Time2++;
memset(match,0,sizeof(match));
for(int k=1;k<=totB;k++)
if(g[i][k+totA]&&g[j][k+totA]){
flag[k]=Time2;tot++;
}
for(int k=1;k<=totB;k++)
if((b[k]&1)&&flag[k]==Time2){
Time1++;
if(dfs(k))sum++;
}
ans=max(ans,tot-sum+2);//同理,选2个
}
}
}
inline void SolveB(){
for(int i=1;i<=totB;i++)
if(b[i]&1){//建补图,即取条件不符合的
for(int j=1;j<=totB;j++){
if(!(b[j]&1)&&!(Count(b[i]|b[j])&1))
add(i,j);
}
}
}
int main(){
int T=read();
while(T--){
totA=read(),totB=read(),M=read();
for(int i=1;i<=totA;i++)
a[i]=read();
for(int i=1;i<=totB;i++)
b[i]=read();
SolveB();
for(int i=1;i<=M;i++){
int u=read(),v=read();
g[u][v+totA]=g[v+totA][u]=1;//记录朋友关系
}
SolveA();
printf("%d\n",ans);
}
return 0;
}
【二分图】HEOI2012 朋友圈的更多相关文章
- bzoj 2744: [HEOI2012]朋友圈 二分图匹配
2744: [HEOI2012]朋友圈 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 612 Solved: 174[Submit][Status] ...
- 【BZOJ 2744】 2744: [HEOI2012]朋友圈 (最大团,二分图匹配,构图)
2744: [HEOI2012]朋友圈 Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他 ...
- 【BZOJ 2744 】[HEOI2012]朋友圈
Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最 ...
- 【刷题】BZOJ 2744 [HEOI2012]朋友圈
Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最 ...
- luogu P2423 [HEOI2012]朋友圈 (最大团)
在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着. 一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最大数目.两个国家看成是 ...
- BZOJ2744:[HEOI2012]朋友圈(最大团,乱搞)
Description 在很久很久以前,曾经有两个国家和睦相处,无忧无虑的生活着.一年一度的评比大会开始了,作为和平的两国,一个朋友圈数量最多的永远都是最值得他人的尊敬,所以现在就是需要你求朋友圈的最 ...
- BZOJ2744 HEOI2012朋友圈(二分图匹配)
先考虑B国.容易发现a xor b mod 2=0即二进制末位相同,那么可以据此将所有人分成两部分,每一部分各自是一个完全图.然后再将a or b有奇数个1的边连上,现在需要求的就是这样一个图里的最大 ...
- bzoj2744 [HEOI2012]朋友圈——二分图匹配
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2744 首先,求一个图的最大团等价于求它的补图的最大独立集,而二分图的最大独立集 = 总点数 ...
- [HEOI2012]朋友圈
题目 我们发现我们要求的是一个最大团问题,众所周知这是一个\(NP\)难问题,除了爆搜没有什么别的方法,但是这道题我们可以根据图的特殊性质入手 我们如果把\(B\)国的人分成奇数和偶数两类,就会发现奇 ...
随机推荐
- 使用PXE+VNC方式安装CentOS 7
U盘坏了,用个下面的方法安装 安装配置dhcp yum -y install dhcp tftp-server 修改如下,网段改为你自己的网段 vim /etc/dhcp/dhcpd.conf sub ...
- [剑指Offer]66-构建乘积数组
题目 给定一个数组A[0,1,...,n-1],请构建一个数组B[0,1,...,n-1],其中B中的元素B[i]=A[0]A[1]...A[i-1]A[i+1]...A[n-1].不能使用除法. 题 ...
- 预科班D6
2020.09.14星期一 预科班D6 学习内容: 自习 发布小游戏 1.配置网络 #查看当前ip ifconfig #关闭NetworkManager systemctl stop NetworkM ...
- python语句与函数
赋值语句 : 分支语句 : 函数 :根据输入参数产生不同输出功能 程序的输入与输出 input() 从控制台获得用户输入的函数 使用格式 print()函数 以字符形式向控制台输出结果的函数 字符类型 ...
- 将lua编译进nginx
1.先安装lua-jit,网上说也可以下载lua,不过lua-jit效率比较高,地址:http://luajit.org/download.html我下的是2.0.3版本的下载解压后,直接make & ...
- redis哨兵机制--配置文件sentinel.conf详解
转载自 https://blog.csdn.net/u012441222/article/details/80751390 Redis的哨兵机制是官方推荐的一种高可用(HA)方案,我们在使用Redis ...
- 使用监听器来启动spring -------使用监听器初始化上下文参数
问题: 数据初始化监听器要注入spring容器的对象,必须先启动spring容器才能使用监听器初始化数据. 解决: 使用监听器来启动spring框架 问题:spring框架启动需要哪些参数? 1.需要 ...
- Apollo系列(一):分布式配置中心Apollo安装(Linux、Docker)
一.介绍 Apollo(阿波罗)是携程框架部门研发的分布式配置中心,能够集中化管理应用不同环境.不同集群的配置,配置修改后能够实时推送到应用端,并且具备规范的权限.流程治理等特性,适用于微服务配置管理 ...
- 万字长文 | 23 个问题 TCP 疑难杂症全解析
每个时代,都不会亏待会学习的人. 在进入今天主题之前我先抛几个问题,这篇文章一共提出 23 个问题. TCP 握手一定是三次?TCP 挥手一定是四次? 为什么要有快速重传,超时重传不够用?为什么要有 ...
- Spring学习(五)--Spring的IOC
1.BeanDefinition在IOC的注册 当BeanDefinition完成载入和解析之后,用户定义的BeanDefinition在IOC容器中已经建立自己的数据结构和数据表示,但是无法使用,需 ...