SP1772 Find The Determinant II
题意
\(T\) 组数据,每组给定两个整数 \(n,k\),求 \(\det A\),其中 \(A\) 为一个 \(n\times n\) 的矩阵且 \(A_{i,j}=\gcd(i,j)^k\),对 \(10^6+3\) 取模。
\(\texttt{Data Range:}1\leq T\leq 20,1\leq n\leq 10^6,1\leq k\leq 10^9\)
题解
很好的一道数论题。(然而可能只是因为我出过一道相似的)
类似于这个题的思路,设 \(f_{i}\) 为消元后 \(A_{i,i}\) 的值,我们有
\]
移项得到
\]
这个式子跟 \(\varphi(n)\) 的狄利克雷卷积式有些类似,我们考虑狄利克雷生成函数求通项。为了不失普遍性,我们记消元之后的 \(f(n)=\varphi_k(n)\)。(这个东西其实叫 Jordan totient function,符号为 \(J_k(n)\),但是为了体现出类比所以我选用这个符号)
套个 \(\sum\) 我们有
\]
移项有
\]
使用欧拉乘积公式化开右边(其中 \(P\) 是素数集)
\]
这里有一个定理:如果 \(g_n\) 存在积性,那么可以将 \(g_n\) 对应的狄利克雷生成函数写成如下形式
\]
发现之前式子的右边很像这个东西,所以右边写成这个形式有
\]
所以我们知道 \(\varphi_k(i)\) 是积性函数,也知道在 \(p^k\) 处的取值,所以有:
\]
线性筛出这东西即可,答案为 \(\prod\limits_{i=1}^{n}\varphi_k(i)\),时间复杂度 \(O(Tn)\)。
交 SPOJ 的题是可以正常开 pragma 的
代码
#include<bits/stdc++.h>
#pragma GCC optimize("Ofast,unroll-loops")
using namespace std;
typedef int ll;
typedef long long int li;
const ll MAXN=1e6+51,MOD=1e6+3;
ll test,n,kk,ptot,res;
ll np[MAXN],prime[MAXN],phi[MAXN],pwPr[MAXN];
inline ll read()
{
register ll num=0,neg=1;
register char ch=getchar();
while(!isdigit(ch)&&ch!='-')
{
ch=getchar();
}
if(ch=='-')
{
neg=-1;
ch=getchar();
}
while(isdigit(ch))
{
num=(num<<3)+(num<<1)+(ch-'0');
ch=getchar();
}
return num*neg;
}
inline ll qpow(ll base,ll exponent)
{
ll res=1;
while(exponent)
{
if(exponent&1)
{
res=(li)res*base%MOD;
}
base=(li)base*base%MOD,exponent>>=1;
}
return res;
}
inline void sieve(ll limit)
{
np[1]=phi[1]=1,ptot=0;
for(register int i=2;i<=limit;i++)
{
if(!np[i])
{
prime[++ptot]=i,phi[i]=(pwPr[i]=qpow(i,kk))-1;
}
for(register int j=1;i*prime[j]<=limit;j++)
{
np[i*prime[j]]=1;
if(i%prime[j]==0)
{
phi[i*prime[j]]=(li)phi[i]*pwPr[prime[j]]%MOD;
break;
}
phi[i*prime[j]]=(li)phi[i]*phi[prime[j]]%MOD;
}
}
}
inline void solve()
{
n=read(),kk=read()%(MOD-1),sieve(n),res=1;
for(register int i=1;i<=n;i++)
{
res=(li)res*phi[i]%MOD;
}
printf("%d\n",res);
}
int main()
{
test=read();
for(register int i=0;i<test;i++)
{
solve();
}
}
SP1772 Find The Determinant II的更多相关文章
- Leetcode 笔记 113 - Path Sum II
题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...
- Leetcode 笔记 117 - Populating Next Right Pointers in Each Node II
题目链接:Populating Next Right Pointers in Each Node II | LeetCode OJ Follow up for problem "Popula ...
- 函数式Android编程(II):Kotlin语言的集合操作
原文标题:Functional Android (II): Collection operations in Kotlin 原文链接:http://antonioleiva.com/collectio ...
- 统计分析中Type I Error与Type II Error的区别
统计分析中Type I Error与Type II Error的区别 在统计分析中,经常提到Type I Error和Type II Error.他们的基本概念是什么?有什么区别? 下面的表格显示 b ...
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- [LeetCode] Guess Number Higher or Lower II 猜数字大小之二
We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...
- [LeetCode] Number of Islands II 岛屿的数量之二
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- [LeetCode] Palindrome Permutation II 回文全排列之二
Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...
- [LeetCode] Permutations II 全排列之二
Given a collection of numbers that might contain duplicates, return all possible unique permutations ...
随机推荐
- burp suite之spider(爬虫)
spider (蜘蛛,这里的意思指爬行) 像蜘蛛一样在网站上爬行出网站的个个目录信息,并发送至Target. 1.Control(控制) Spider is paused :停止蜘蛛爬行 Clear ...
- Spring 配置文件AOP
1 <!-- 配置切面bean --> 2 <bean id="permAspect" class="com.tx.spring.aspect.Perm ...
- 这里有一份Java程序员的珍藏书单,请您注意查收
前言 不要因为迷茫,而停止了脚下前进的路.给大家推荐一份Java程序员必看的书单,豆瓣评分都挺不错的,每一本都值得去读,都值得去收藏,加油呀 本文已经收录到github https://github. ...
- 软件定义网络实验记录④--Open vSwitch 实验——Mininet 中使用 OVS 命令
一.实验目的 Mininet 安装之后,会连带安装 Open vSwitch,可以直接通过 Python 脚本调用 Open vSwitch 命令,从而直接控制 Open vSwitch,通过实验了解 ...
- 使用free掉的内存的危害
1 源码 #include <stdio.h> #include <stdlib.h> // 编译环境 gcc int main(void) { printf("** ...
- Numpy中的shape和reshape()
shape是查看数据有多少行多少列reshape()是数组array中的方法,作用是将数据重新组织 1.shape import numpy as np a = np.array([1,2,3,4,5 ...
- 关于IPA文件重签名后如何跟踪管理APP的技术探讨和实践演示
前言:开发iOS的朋友都知道,在功能开发完成后,我们就会用申请的苹果账号在后台做证书配置,然后提交到AppStore,但是也有部分APP我们不需要提交到AppStore,比如内部测试用的APP.定制给 ...
- dubbo使用问题
新入职此公司, 发现公司使用的框架原来是传说中的分布式的(原谅我以前在传统公司工作,并远离浪潮久矣), 使用过程中发现各服务之间使用 dubbo 进行通信. 特地总结下遇见的坑,为以后总结经验. ...
- 蒲公英 · JELLY技术周刊 Vol.25 · Webpack 5 正式发布,你学废了么
蒲公英 · JELLY技术周刊 Vol.25 阔别两年,Webpack 5 正式发布了,不仅清理掉很多冗余的功能,同样也为我们带来了很多新鲜的能力,不论是默认开启的持久缓存,还是反病毒保护,亦或者被其 ...
- Python:MySQL数据库环境相关问题
系统环境 Ubuntu 16.04.2 LTS mysql Ver 14.14 Distrib 5.7.18, for Linux (x86_64) using EditLine wrapper P ...