之前讲解了图注意力网络的官方tensorflow版的实现,由于自己更了解pytorch,所以打算将其改写为pytorch版本的。

对于图注意力网络还不了解的可以先去看看tensorflow版本的代码,之前讲解的地址:

非稀疏矩阵版:https://www.cnblogs.com/xiximayou/p/13622283.html

稀疏矩阵版:https://www.cnblogs.com/xiximayou/p/13623989.html

以下改写后的代码我已经上传到gihub上,地址为:

https://github.com/taishan1994/pytorch_gat

图注意力网络的官方代码使用的是tensorflow1.x版本的,地址为:

https://github.com/Diego999/pyGAT

下面开始进入正题了。

1、tensorflow1.x的一般建模过程:

  • 定义好训练的数据
  • 定义计算图(包含占位)
  • 定义训练主函数、损失函数计算、优化器
  • 定义Session,参数初始化以及实际的前向传播和反向传播计算都是在Session中

2、将tensorflow转换为pytorch代码

其他数据处理的代码都是一致的,主要是一些需要改变的地方:

2.1 数据的读取

在tensorflow中,标签是要经过onehot编码的,而在pytorch中确是不用的,在load_data中:

def load_data(dataset_str): # {'pubmed', 'citeseer', 'cora'}
"""Load data."""
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str))
test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :] #pytorch的标签不需要进行one-hot编码
my_labels = np.where(labels==1)[1]
idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y)+500)

train_my_labels_mask
= sample_mask(idx_train, my_labels.shape[0])
val_my_labels_mask = sample_mask(idx_val, my_labels.shape[0])
test_my_labels_mask = sample_mask(idx_test, my_labels.shape[0])
train_my_labels = my_labels[train_my_labels_mask]
val_my_labels = my_labels[val_my_labels_mask]
test_my_labels =
my_labels[test_my_labels_mask]

train_mask = sample_mask(idx_train, labels.shape[0])
val_mask = sample_mask(idx_val, labels.shape[0])
test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :] print(adj.shape)
print(features.shape)
data_dict = {
'adj': adj,
'features': features,
'y_train': y_train,
'y_val': y_val,
'y_test': y_test,
'train_mask': train_mask,
'val_mask': val_mask,
'test_mask': test_mask,
'train_my_labels': train_my_labels,
'val_my_labels': val_my_labels,
'test_my_labels': test_my_labels,
'my_labels': my_labels
}
return data_dict

我们要使用np.where()函数,将每一个ont-hot编码中值为1的索引(也就是标签)取出来,然后在对其进行划分训练标签、验证标签和测试标签。

顺便提一下,当我们要返回的值很多的时候,可以用一个字典包装起来,最后返回该字典就行了,这符合python的编码规范。

2.2 注意力层的搭建

在tensorflow中:

conv1d = tf.layers.conv1d

def attn_head(seq, out_sz, bias_mat, activation, in_drop=0.0, coef_drop=0.0, residual=False):
with tf.name_scope('my_attn'):
if in_drop != 0.0:
seq = tf.nn.dropout(seq, 1.0 - in_drop) seq_fts = tf.layers.conv1d(seq, out_sz, 1, use_bias=False) # simplest self-attention possible
f_1 = tf.layers.conv1d(seq_fts, 1, 1)
f_2 = tf.layers.conv1d(seq_fts, 1, 1)
logits = f_1 + tf.transpose(f_2, [0, 2, 1])
coefs = tf.nn.softmax(tf.nn.leaky_relu(logits) + bias_mat) if coef_drop != 0.0:
coefs = tf.nn.dropout(coefs, 1.0 - coef_drop)
if in_drop != 0.0:
seq_fts = tf.nn.dropout(seq_fts, 1.0 - in_drop) vals = tf.matmul(coefs, seq_fts)
ret = tf.contrib.layers.bias_add(vals) # residual connection
if residual:
if seq.shape[-1] != ret.shape[-1]:
ret = ret + conv1d(seq, ret.shape[-1], 1) # activation
else:
ret = ret + seq return activation(ret) # activation

直接就可以使用相关api进行计算,但是在pytorch中,无论是定义自己的层还是模型,都需要先建立,然后再使用(一般是这样)。改写后的代码如下:

import torch
import torch.nn as nn class Attn_head(nn.Module):
def __init__(self,
in_channel,
out_sz,
bias_mat,
in_drop=0.0,
coef_drop=0.0,
activation=None,
residual=False):
super(Attn_head, self).__init__()
self.in_channel = in_channel
self.out_sz = out_sz
self.bias_mat = bias_mat
self.in_drop = in_drop
self.coef_drop = coef_drop
self.activation = activation
self.residual = residual self.conv1 = nn.Conv1d(self.in_channel, self.out_sz, 1)
self.conv2_1 = nn.Conv1d(self.out_sz, 1, 1)
self.conv2_2 = nn.Conv1d(self.out_sz, 1, 1)
self.leakyrelu = nn.LeakyReLU()
self.softmax = nn.Softmax(dim=1)
#pytorch中dropout的参数p表示每个神经元一定概率失活
self.in_dropout = nn.Dropout()
self.coef_dropout = nn.Dropout()
self.res_conv = nn.Conv1d(self.in_channel, self.out_sz, 1) def forward(self,x):
seq = x
if self.in_drop != 0.0:
seq = self.in_dropout(x)
seq_fts = self.conv1(seq)
f_1 = self.conv2_1(seq_fts)
f_2 = self.conv2_2(seq_fts)
logits = f_1 + torch.transpose(f_2, 2, 1)
logits = self.leakyrelu(logits)
coefs = self.softmax(logits + self.bias_mat)
if self.coef_drop !=0.0:
coefs = self.coef_dropout(coefs)
if self.in_dropout !=0.0:
seq_fts = self.in_dropout(seq_fts)
ret = torch.matmul(coefs, torch.transpose(seq_fts, 2, 1))
ret = torch.transpose(ret, 2, 1)
if self.residual:
if seq.shape[1] != ret.shape[1]:
ret = ret + self.res_conv(seq)
else:
ret = ret + seq
return self.activation(ret)

要继承nn.Module类,然后在__init__中初始化相关参数以及对应的层,在forward中进行前向传播计算。

2.3 搭建模型

有了注意力层之后,就可以搭建模型了,tensorflow的代码:

 def inference(inputs, nb_classes, nb_nodes, training, attn_drop, ffd_drop,
bias_mat, hid_units, n_heads, activation=tf.nn.elu, residual=False):
attns = []
for _ in range(n_heads[0]):
attns.append(layers.attn_head(inputs, bias_mat=bias_mat,
out_sz=hid_units[0], activation=activation,
in_drop=ffd_drop, coef_drop=attn_drop, residual=False))
h_1 = tf.concat(attns, axis=-1)
for i in range(1, len(hid_units)):
h_old = h_1
attns = []
for _ in range(n_heads[i]):
attns.append(layers.attn_head(h_1, bias_mat=bias_mat,
out_sz=hid_units[i], activation=activation,
in_drop=ffd_drop, coef_drop=attn_drop, residual=residual))
h_1 = tf.concat(attns, axis=-1)
out = []
for i in range(n_heads[-1]):
out.append(layers.attn_head(h_1, bias_mat=bias_mat,
out_sz=nb_classes, activation=lambda x: x,
in_drop=ffd_drop, coef_drop=attn_drop, residual=False))
logits = tf.add_n(out) / n_heads[-1] return logits

改写之后的pytorch代码:

import numpy as np
import torch.nn as nn
import torch
from layer import * class GAT(nn.Module):
def __init__(self,
nb_classes,
nb_nodes,
attn_drop,
ffd_drop,
bias_mat,
hid_units,
n_heads,
residual=False):
super(GAT, self).__init__()
self.nb_classes = nb_classes
self.nb_nodes = nb_nodes
self.attn_drop = attn_drop
self.ffd_drop = ffd_drop
self.bias_mat = bias_mat
self.hid_units = hid_units
self.n_heads = n_heads
self.residual = residual self.attn1 = Attn_head(in_channel=1433, out_sz=self.hid_units[0],
bias_mat=self.bias_mat, in_drop=self.ffd_drop,
coef_drop=self.attn_drop, activation=nn.ELU(),
residual=self.residual)
self.attn2 = Attn_head(in_channel=64, out_sz=self.nb_classes,
bias_mat=self.bias_mat, in_drop=self.ffd_drop,
coef_drop=self.attn_drop, activation=nn.ELU(),
residual=self.residual)
self.softmax = nn.Softmax(dim=1) def forward(self, x):
attns = []
for _ in range(self.n_heads[0]):
attns.append(self.attn1(x))
h_1 = torch.cat(attns, dim=1)
out = self.attn2(h_1)
logits = torch.transpose(out.view(self.nb_classes,-1), 1, 0)
logits = self.softmax(logits)
return logits

和tensorflow代码不同的是,这里我们仅仅定义了两层注意力。还需要注意的是,我们在__init__中定义相关层的时候,对于输入和输出的维度我们是要预先知道的,并填充进去,如果在forward中实际的值与预先定义的维度不同,那么就会报错。

2.4 进行训练、验证和测试

首先还是来看一下tensorflow是怎么定义的:

with tf.Graph().as_default():
with tf.name_scope('input'):
ftr_in = tf.placeholder(dtype=tf.float32, shape=(batch_size, nb_nodes, ft_size))
bias_in = tf.placeholder(dtype=tf.float32, shape=(batch_size, nb_nodes, nb_nodes))
lbl_in = tf.placeholder(dtype=tf.int32, shape=(batch_size, nb_nodes, nb_classes))
msk_in = tf.placeholder(dtype=tf.int32, shape=(batch_size, nb_nodes))
attn_drop = tf.placeholder(dtype=tf.float32, shape=())
ffd_drop = tf.placeholder(dtype=tf.float32, shape=())
is_train = tf.placeholder(dtype=tf.bool, shape=()) logits = model.inference(ftr_in, nb_classes, nb_nodes, is_train,
attn_drop, ffd_drop,
bias_mat=bias_in,
hid_units=hid_units, n_heads=n_heads,
residual=residual, activation=nonlinearity)
log_resh = tf.reshape(logits, [-1, nb_classes])
lab_resh = tf.reshape(lbl_in, [-1, nb_classes])
msk_resh = tf.reshape(msk_in, [-1])
loss = model.masked_softmax_cross_entropy(log_resh, lab_resh, msk_resh)
accuracy = model.masked_accuracy(log_resh, lab_resh, msk_resh) train_op = model.training(loss, lr, l2_coef) saver = tf.train.Saver() init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) vlss_mn = np.inf
vacc_mx = 0.0
curr_step = 0 with tf.Session() as sess:
sess.run(init_op) train_loss_avg = 0
train_acc_avg = 0
val_loss_avg = 0
val_acc_avg = 0 for epoch in range(nb_epochs):
print("epoch: ",epoch)
tr_step = 0
tr_size = features.shape[0] while tr_step * batch_size < tr_size:
_, loss_value_tr, acc_tr = sess.run([train_op, loss, accuracy],
feed_dict={
ftr_in: features[tr_step*batch_size:(tr_step+1)*batch_size],
bias_in: biases[tr_step*batch_size:(tr_step+1)*batch_size],
lbl_in: y_train[tr_step*batch_size:(tr_step+1)*batch_size],
msk_in: train_mask[tr_step*batch_size:(tr_step+1)*batch_size],
is_train: True,
attn_drop: 0.6, ffd_drop: 0.6})
train_loss_avg += loss_value_tr
train_acc_avg += acc_tr
tr_step += 1 vl_step = 0
vl_size = features.shape[0] while vl_step * batch_size < vl_size:
loss_value_vl, acc_vl = sess.run([loss, accuracy],
feed_dict={
ftr_in: features[vl_step*batch_size:(vl_step+1)*batch_size],
bias_in: biases[vl_step*batch_size:(vl_step+1)*batch_size],
lbl_in: y_val[vl_step*batch_size:(vl_step+1)*batch_size],
msk_in: val_mask[vl_step*batch_size:(vl_step+1)*batch_size],
is_train: False,
attn_drop: 0.0, ffd_drop: 0.0})
val_loss_avg += loss_value_vl
val_acc_avg += acc_vl
vl_step += 1 print('Training: loss = %.5f, acc = %.5f | Val: loss = %.5f, acc = %.5f' %
(train_loss_avg/tr_step, train_acc_avg/tr_step,
val_loss_avg/vl_step, val_acc_avg/vl_step)) if val_acc_avg/vl_step >= vacc_mx or val_loss_avg/vl_step <= vlss_mn:
if val_acc_avg/vl_step >= vacc_mx and val_loss_avg/vl_step <= vlss_mn:
vacc_early_model = val_acc_avg/vl_step
vlss_early_model = val_loss_avg/vl_step
saver.save(sess, checkpt_file)
vacc_mx = np.max((val_acc_avg/vl_step, vacc_mx))
vlss_mn = np.min((val_loss_avg/vl_step, vlss_mn))
curr_step = 0
else:
curr_step += 1
if curr_step == patience:
print('Early stop! Min loss: ', vlss_mn, ', Max accuracy: ', vacc_mx)
print('Early stop model validation loss: ', vlss_early_model, ', accuracy: ', vacc_early_model)
break train_loss_avg = 0
train_acc_avg = 0
val_loss_avg = 0
val_acc_avg = 0 saver.restore(sess, checkpt_file) ts_size = features.shape[0]
ts_step = 0
ts_loss = 0.0
ts_acc = 0.0 while ts_step * batch_size < ts_size:
loss_value_ts, acc_ts = sess.run([loss, accuracy],
feed_dict={
ftr_in: features[ts_step*batch_size:(ts_step+1)*batch_size],
bias_in: biases[ts_step*batch_size:(ts_step+1)*batch_size],
lbl_in: y_test[ts_step*batch_size:(ts_step+1)*batch_size],
msk_in: test_mask[ts_step*batch_size:(ts_step+1)*batch_size],
is_train: False,
attn_drop: 0.0, ffd_drop: 0.0})
ts_loss += loss_value_ts
ts_acc += acc_ts
ts_step += 1 print('Test loss:', ts_loss/ts_step, '; Test accuracy:', ts_acc/ts_step) sess.close()

就是建立图、然后在Session中执行。

这里需要注意的是,features的维度是(2708,1433),无论是tensorflow还是pytorch,都需要对其扩充一个维度:(1,2708,1433),其余数据也同样。在计算损失的时候,网络输出的值的维度注意是:(2708,7),就没有了之前的那个维度了。在pytorch中,输入的形状和tensorflow也不大一样,它的输入是:(1,1433,2708),第二位是特征的维度,第三位才是节点的数目,这是和tensorflow主要的区别之一。

接下来看下pytorch中是怎么做的:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from utils import *
from model import * np.random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed_all(1) torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True device = torch.device("cuda" if torch.cuda.is_available() else "cpu") data = load_data("cora")
adj = data['adj']
features = data['features']
y_train = data['y_train']
y_val = data['y_val']
y_test = data['y_test']
train_mask = data['train_mask']
val_mask = data['val_mask']
test_mask = data['test_mask']
train_my_labels = data['train_my_labels']
val_my_labels = data['val_my_labels']
test_my_labels = data['test_my_labels']
my_labels = data['my_labels'] features, spars = preprocess_features(features) #节点数目
nb_nodes = features.shape[0]
#特征维度
ft_sizes = features.shape[1]
#类别数目
nb_classes = my_labels.shape[0] #将邻接矩阵的稀疏形式转换为原始矩阵
adj = adj.todense() #新增加一个维度
adj = adj[np.newaxis]
features = features[np.newaxis]
y_train = y_train[np.newaxis]
y_val = y_val[np.newaxis]
y_test = y_test[np.newaxis]
#train_mask = train_mask[np.newaxis]
#val_mask = val_mask[np.newaxis]
#test_mask = test_mask[np.newaxis] biases = torch.from_numpy(adj_to_bias(adj, [nb_nodes], nhood=1)).float().to(device) features = torch.from_numpy(features)
#pytorch输入的特征:[batch, features,nodes],第二位是特征维度
#而tensorflow的输入是:[batch, nodes, features]
features = torch.transpose(features,2,1).to(device) #定义相关变量
hid_units=[8]
n_heads=[8, 1]
epochs = 5000
lr = 0.01 #定义模型
gat = GAT(nb_classes=nb_classes,
nb_nodes=nb_nodes,
attn_drop=0.0,
ffd_drop=0.0,
bias_mat=biases,
hid_units=hid_units,
n_heads=n_heads,
residual=False).to(device) criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(params=gat.parameters(),lr=lr,betas=(0.9, 0.99)) #y_train = torch.from_numpy(np.where(y_train==1)[2])
#y_val = torch.from_numpy(np.where(y_val==1)[2])
#y_test = torch.from_numpy(np.where(y_test==1)[2])
train_my_labels = torch.from_numpy(train_my_labels).long().to(device)
val_my_labels = torch.from_numpy(val_my_labels).long().to(device)
test_my_labels = torch.from_numpy(test_my_labels).long().to(device) train_mask = np.where(train_mask == 1)[0]
val_mask = np.where(val_mask == 1)[0]
test_mask = np.where(test_mask == 1)[0]
train_mask = torch.from_numpy(train_mask).to(device)
val_mask = torch.from_numpy(val_mask).to(device)
test_mask = torch.from_numpy(test_mask).to(device) print("训练节点个数:", len(train_my_labels))
print("验证节点个数:", len(val_my_labels))
print("测试节点个数:", len(test_my_labels)) def train():
gat.train()
correct = 0
optimizer.zero_grad()
outputs = gat(features)
train_mask_outputs = torch.index_select(outputs, 0, train_mask)
#print("train_mask_outputs.shape:",train_mask_outputs.shape)
#print("train_my_labels.shape[0]:",train_my_labels.shape[0])
_, preds =torch.max(train_mask_outputs.data, 1)
loss = criterion(train_mask_outputs, train_my_labels)
loss.backward()
optimizer.step()
correct += torch.sum(preds == train_my_labels).to(torch.float32)
acc = correct / train_my_labels.shape[0]
return loss,acc def val():
gat.eval()
with torch.no_grad():
correct = 0
outputs = gat(features)
val_mask_outputs = torch.index_select(outputs, 0, val_mask)
#print("val_mask_outputs.shape:",val_mask_outputs.shape)
#print("val_my_labels.shape[0]:",val_my_labels.shape[0])
_, preds =torch.max(val_mask_outputs.data, 1)
loss = criterion(val_mask_outputs, val_my_labels)
correct += torch.sum(preds == val_my_labels).to(torch.float32)
acc = correct / val_my_labels.shape[0]
return loss,acc def test():
gat.eval()
with torch.no_grad():
correct = 0
outputs = gat(features)
test_mask_outputs = torch.index_select(outputs, 0, test_mask)
#print("test_mask_outputs.shape:",test_mask_outputs.shape)
#print("val_my_labels.shape[0]:",val_my_labels.shape[0])
_, preds =torch.max(test_mask_outputs.data, 1)
loss = criterion(test_mask_outputs, test_my_labels)
correct += torch.sum(preds == test_my_labels).to(torch.float32)
acc = correct / test_my_labels.shape[0]
print("TestLoss:{:.4f},TestAcc:{:.4f}".format(loss,acc))
return loss,acc,test_mask_outputs.cpu().numpy(),test_my_labels.cpu().numpy() from sklearn.manifold import TSNE
import matplotlib.pyplot as plt def main():
train_loss_history = []
val_loss_history = []
train_acc_history = []
val_acc_history = []
for epoch in range(1,epochs+1):
train_loss,train_acc = train()
val_loss,val_acc = val()
print("epoch:{:03d},TrainLoss:{:.4f},TrainAcc:{:.4f},ValLoss:{:.4f},ValAcc:{:.4f}"
.format(epoch,train_loss,train_acc,val_loss,val_acc))
train_loss_history.append(train_loss)
train_acc_history.append(train_acc)
val_loss_history.append(val_loss)
val_acc_history.append(val_acc)
num_epochs = range(1, epochs + 1)
plt.plot(num_epochs, train_loss_history, 'b--')
plt.plot(num_epochs, val_loss_history, 'r-')
plt.title('Training and validation Loss ')
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend(["train_loss", 'val_loss'])
plt.savefig("loss.png")
plt.close() plt.plot(num_epochs, train_acc_history, 'b--')
plt.plot(num_epochs, val_acc_history, 'r-')
plt.title('Training and validation Acc ')
plt.xlabel("Epochs")
plt.ylabel("Acc")
plt.legend(['train_acc','val_acc'])
plt.savefig("acc.png")
plt.close() _, _, test_data, test_labels = test()
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) # TSNE降维,降到2
low_dim_embs = tsne.fit_transform(test_data)
plt.title('tsne result')
plt.scatter(low_dim_embs[:,0], low_dim_embs[:,1], marker='o', c=test_labels)
plt.savefig("tsne.png")
plt.close() main()

大体上还是很简单明了的,这里还是的注意一个问题。在pytorch中,我们首使用网络对整个图进行计算,但是我们只更新根据mask所得的节点的参数,如果直接是使用outputs[train_mask],这样是不行的,pytroch的张量是不支持根据布尔值来进行分割的,如果我们将里面的True和False转换为1和0,虽然不会报错,但是就根本没有作用,因此在一开始,我们就要找到哪些节点是需要被训练的,取得其索引值,然后使用torch.index_select()进行切割。

最后绘制了损失函数和准确率随epoch的变化情况以及降维之后测试数据的分布情况。

3、结果

官方实现:

Dataset: cora
----- Opt. hyperparams -----
lr: 0.005
l2_coef: 0.0005
----- Archi. hyperparams -----
nb. layers: 1
nb. units per layer: [8]
nb. attention heads: [8, 1]
residual: False
nonlinearity: <function elu at 0x7f1b7507af28>
model: <class 'models.gat.GAT'>
(2708, 2708)
(2708, 1433) epoch: 1
Training: loss = 1.94574, acc = 0.14286 | Val: loss = 1.93655, acc = 0.13600
epoch: 2
Training: loss = 1.94598, acc = 0.15714 | Val: loss = 1.93377, acc = 0.14800
epoch: 3
Training: loss = 1.94945, acc = 0.14286 | Val: loss = 1.93257, acc = 0.19600
epoch: 4
Training: loss = 1.93438, acc = 0.24286 | Val: loss = 1.93172, acc = 0.22800
epoch: 5
Training: loss = 1.93199, acc = 0.17143 | Val: loss = 1.93013, acc = 0.36400
。。。。。。
epoch: 674
Training: loss = 1.23833, acc = 0.49286 | Val: loss = 1.01357, acc = 0.81200
Early stop! Min loss: 1.010906457901001 , Max accuracy: 0.8219999074935913
Early stop model validation loss: 1.3742048740386963 , accuracy: 0.8219999074935913
Test loss: 1.3630210161209106 ; Test accuracy: 0.8219999074935913

自己的pytorch实现:

(2708, 2708)
(2708, 1433)
训练节点个数: 140
验证节点个数: 500
测试节点个数: 1000
epoch:001,TrainLoss:7.9040,TrainAcc:0.0000,ValLoss:7.9040,ValAcc:0.0000
epoch:002,TrainLoss:7.9040,TrainAcc:0.0000,ValLoss:7.9039,ValAcc:0.1920
epoch:003,TrainLoss:7.9039,TrainAcc:0.0714,ValLoss:7.9039,ValAcc:0.1600
epoch:004,TrainLoss:7.9038,TrainAcc:0.1000,ValLoss:7.9039,ValAcc:0.1020
。。。。。。
epoch:2396,TrainLoss:7.0191,TrainAcc:0.8929,ValLoss:7.4967,ValAcc:0.7440
epoch:2397,TrainLoss:7.0400,TrainAcc:0.8786,ValLoss:7.4969,ValAcc:0.7580
epoch:2398,TrainLoss:7.0188,TrainAcc:0.8929,ValLoss:7.4974,ValAcc:0.7580
epoch:2399,TrainLoss:7.0045,TrainAcc:0.9071,ValLoss:7.4983,ValAcc:0.7620
epoch:2400,TrainLoss:7.0402,TrainAcc:0.8714,ValLoss:7.4994,ValAcc:0.7620
TestLoss:7.4805,TestAcc:0.7700

可能实现的和原始tensorflow版本的还有一些差别,自己实现的只有0.77。还有点奇怪的地方是loss比官方的大好多。。。

4、总结

关于tensorflow代码转pytorch需要注意的一些地方:

(1)输入的数据不同,比如特征,tensorflow是(1,2708,1433),pytorch的是(1,1433,2708)。

(2)标签的编码方式不同,tensorflow是onehot编码,比如[[0,0,1],[1,0,0],[0,1,0]],pytorch就是原始的类[2,0,1]。

(3)构建模型的方式不同,tensorflow直接使用,pytorch要继承nn.Module,然后在__init__建立层,在forward中进行计算。

(4)训练验证测试的不同,tensorflow要先构建计算图,然后在Session中执行计算,也就是静态图,pytorch是动态图,没有显示的定义计算图。

(5)相关的接口也不同,这是自然而然的,毕竟都有着自己的设计理念,比如tf.concat()对应torch.cat(),即使名字相同的两个类,使用的方法也可能是不同的。

总而言之,动手是最重要的。

如果哪里有问题,还请指出。

如何将tensorflow1.x代码改写为pytorch代码(以图注意力网络(GAT)为例)的更多相关文章

  1. (原)SphereFace及其pytorch代码

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/8524937.html 论文: SphereFace: Deep Hypersphere Embeddi ...

  2. 目标检测之Faster-RCNN的pytorch代码详解(数据预处理篇)

    首先贴上代码原作者的github:https://github.com/chenyuntc/simple-faster-rcnn-pytorch(非代码作者,博文只解释代码) 今天看完了simple- ...

  3. (转载)PyTorch代码规范最佳实践和样式指南

    A PyTorch Tools, best practices & Styleguide 中文版:PyTorch代码规范最佳实践和样式指南 This is not an official st ...

  4. PyTorch代码调试利器: 自动print每行代码的Tensor信息

    本文介绍一个用于 PyTorch 代码的实用工具 TorchSnooper.作者是TorchSnooper的作者,也是PyTorch开发者之一. GitHub 项目地址: https://github ...

  5. 如何把C++的源代码改写成C代码?而C改C++只需一步!

    ★ 如何把C++的源代码改写成C代码? C++解释器比C语言解释器占用的存储空间要大,想要在某些特定场合兼容C++代码,同时为了节省有限的存储空间,降低成本,也为了提高效率,将用C++语言写的源程序用 ...

  6. pointnet.pytorch代码解析

    pointnet.pytorch代码解析 代码运行 Training cd utils python train_classification.py --dataset <dataset pat ...

  7. 残差网络resnet理解与pytorch代码实现

    写在前面 ​ 深度残差网络(Deep residual network, ResNet)自提出起,一次次刷新CNN模型在ImageNet中的成绩,解决了CNN模型难训练的问题.何凯明大神的工作令人佩服 ...

  8. 资源分享 | PyTea:不用运行代码,静态分析pytorch模型的错误

    ​  前言  ​​​​​​​本文介绍一个Pytorch模型的静态分析器 PyTea,它不需要运行代码,即可在几秒钟之内扫描分析出模型中的张量形状错误.文末附使用方法. 本文转载自机器之心 编辑:CV技 ...

  9. pytorch写一个LeNet网络

    我们先介绍下pytorch中的cnn网络 学过深度卷积网络的应该都非常熟悉这张demo图(LeNet): 先不管怎么训练,我们必须先构建出一个CNN网络,很快我们写了一段关于这个LeNet的代码,并进 ...

随机推荐

  1. Flutter 容器Container类和布局Layout类

    1.布局和容器 [布局]是把[容器]按照不同的方式排列起来. Scaffold包含的主要部门:appBar,body,bottomNavigator 其中body可以是一个布局组件,也可以是一个容器组 ...

  2. 熵权法原理及matlab代码实现

    参考原理博客地址https://blog.csdn.net/u013713294/article/details/53407087 一.基本原理 在信息论中,熵是对不确定性的一种度量.信息量越大,不确 ...

  3. 基于.NetCore3.1系列 —— 日志记录之自定义日志组件

    一.前言 回顾:日志记录之日志核心要素揭秘 在上一篇中,我们通过学习了解在.net core 中内置的日志记录中的几大核心要素,在日志工厂记录器(ILoggerFactory)中实现将日志记录提供器( ...

  4. Pycharm中对与Python的快捷方式

    转自博客园 @python~小成录 pycharm常用快捷键与设置   pycharm高频率使用的快捷键 Ctrl+Shift+F10 运行当前的页面 Ctrl + / 注释(取消注释)选择的行 Ct ...

  5. 如何解决spring boot 项目导入依赖后代码报错问题

    如何解决spring boot 项目导入依赖后代码报错问题 2020-08-15  14:17:18 代码截图如图所示(由于本人问题已经解决,没来得及截图,所以在网上找了一张图片)

  6. 一些Java中不为人知的特殊方法,学完后面试官可能都没你知道的多!

    如果你用过反射并且执行过getDeclaredMethods方法的话,你可能会感到很吃惊.你会发现出现了很多源代码里没有的方法.如果你看一下这些方法的修饰符的话,可能会发现里面有些方法是volatil ...

  7. java中extends与implements的区别

    学了java很久了,久不用之后给同学解决一个java问题的时候,就卡在这个标题上了. 下面是java中extends与implements的区别: 1. 在类的声明中,通过关键字extends来创建一 ...

  8. [PyTorch 学习笔记] 1.1 PyTorch 简介与安装

    PyTorch 的诞生 2017 年 1 月,FAIR(Facebook AI Research)发布了 PyTorch.PyTorch 是在 Torch 基础上用 python 语言重新打造的一款深 ...

  9. Jmeter 常用函数(23)- 详解 __longSum

    如果你想查看更多 Jmeter 常用函数可以在这篇文章找找哦 https://www.cnblogs.com/poloyy/p/13291704.htm 作用 计算两个或多个长值的和 注意 当值不在 ...

  10. Project ACRN documentation

    Project ACRN documentation https://projectacrn.github.io/latest/index.html Virtio devices high-level ...