原文链接:Kubernetes编写自定义controller

来自kubernetes官方github的一张图:

如图所示,图中的组件分为client-go和custom controller两部分:

  1. client-go部分

    • Reflector: 监视特定资源的k8s api, 把新监测的对象放入Delta Fifo队列,完成此操作的函数是ListAndWatch。
    • Informer: 从Delta Fifo队列拿出对象,完成此操作的函数是processLoop。
    • Indexer: 提供线程级别安全来存储对象和key。
  2. custom-controller部分

    • Informer reference: Informer对象引用
    • Indexer reference: Indexer对象引用
    • Resource Event Handlers: 被Informer调用的回调函数,这些函数的作用通常是获取对象的key,并把key放入Work queue,以进一步做处理。
    • Work queue: 工作队列,用于将对象的交付与其处理分离,编写Resource event handler functions以提取传递的对象的key并将其添加到工作队列。
    • Process Item: 用于处理Work queue中的对象,可以有一个或多个其他函数一起处理;这些函数通常使用Indexer reference或Listing wrapper来检索与该键对应的对象。

client-go官方代码例子

package main

import (
"flag"
"fmt"
"time" "k8s.io/klog" "k8s.io/api/core/v1"
meta_v1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/fields"
"k8s.io/apimachinery/pkg/util/runtime"
"k8s.io/apimachinery/pkg/util/wait"
"k8s.io/client-go/kubernetes"
"k8s.io/client-go/tools/cache"
"k8s.io/client-go/tools/clientcmd"
"k8s.io/client-go/util/workqueue"
) // 定义一个结构体Controller
type Controller struct {
indexer cache.Indexer
queue workqueue.RateLimitingInterface
informer cache.Controller
} // 获取controller的函数
func NewController(queue workqueue.RateLimitingInterface, indexer cache.Indexer, informer cache.Controller) *Controller {
return &Controller{
informer: informer,
indexer: indexer,
queue: queue,
}
} // 处理workqueue中的对象
func (c *Controller) processNextItem() bool {
// Wait until there is a new item in the working queue
key, quit := c.queue.Get()
if quit {
return false
}
// Tell the queue that we are done with processing this key. This unblocks the key for other workers
// This allows safe parallel processing because two pods with the same key are never processed in
// parallel.
defer c.queue.Done(key) // Invoke the method containing the business logic
err := c.syncToStdout(key.(string))
// Handle the error if something went wrong during the execution of the business logic
c.handleErr(err, key)
return true
} // syncToStdout is the business logic of the controller. In this controller it simply prints
// information about the pod to stdout. In case an error happened, it has to simply return the error.
// The retry logic should not be part of the business logic.
func (c *Controller) syncToStdout(key string) error {
obj, exists, err := c.indexer.GetByKey(key)
if err != nil { klog.Errorf("Fetching object with key %s from store failed with %v", key, err)
return err
} if !exists { // Below we will warm up our cache with a Pod, so that we will see a delete for one pod
fmt.Printf("Pod %s does not exist anymore\n", key)
} else {
// Note that you also have to check the uid if you have a local controlled resource, which
// is dependent on the actual instance, to detect that a Pod was recreated with the same name
fmt.Printf("Sync/Add/Update for Pod %s\n", obj.(*v1.Pod).GetName())
}
return nil
} // handleErr checks if an error happened and makes sure we will retry later.
func (c *Controller) handleErr(err error, key interface{}) {
if err == nil {
// Forget about the #AddRateLimited history of the key on every successful synchronization.
// This ensures that future processing of updates for this key is not delayed because of
// an outdated error history.
c.queue.Forget(key)
return
} // This controller retries 5 times if something goes wrong. After that, it stops trying.
if c.queue.NumRequeues(key) < {
klog.Infof("Error syncing pod %v: %v", key, err) // Re-enqueue the key rate limited. Based on the rate limiter on the
// queue and the re-enqueue history, the key will be processed later again.
c.queue.AddRateLimited(key)
return
} c.queue.Forget(key)
// Report to an external entity that, even after several retries, we could not successfully process this key
runtime.HandleError(err)
klog.Infof("Dropping pod %q out of the queue: %v", key, err)
} func (c *Controller) Run(threadiness int, stopCh chan struct{}) {
defer runtime.HandleCrash() // Let the workers stop when we are done
defer c.queue.ShutDown()
klog.Info("Starting Pod controller") go c.informer.Run(stopCh) // Wait for all involved caches to be synced, before processing items from the queue is started
if !cache.WaitForCacheSync(stopCh, c.informer.HasSynced) { runtime.HandleError(fmt.Errorf("Timed out waiting for caches to sync"))
return
} for i := ; i < threadiness; i++ {
go wait.Until(c.runWorker, time.Second, stopCh)
} <-stopCh
klog.Info("Stopping Pod controller")
} func (c *Controller) runWorker() {
for c.processNextItem() {
}
} func main() {
var kubeconfig string
var master string // 指定kubeconfig文件
flag.StringVar(&kubeconfig, "kubeconfig", "", "absolute path to the kubeconfig file")
flag.StringVar(&master, "master", "", "master url")
flag.Parse() // creates the connection
config, err := clientcmd.BuildConfigFromFlags(master, kubeconfig)
if err != nil { klog.Fatal(err)
} // creates the clientset
clientset, err := kubernetes.NewForConfig(config)
if err != nil { klog.Fatal(err)
} // create the pod watcher
podListWatcher := cache.NewListWatchFromClient(clientset.CoreV1().RESTClient(), "pods", v1.NamespaceDefault, fields.Everything()) // create the workqueue
queue := workqueue.NewRateLimitingQueue(workqueue.DefaultControllerRateLimiter()) // Bind the workqueue to a cache with the help of an informer. This way we make sure that
// whenever the cache is updated, the pod key is added to the workqueue.
// Note that when we finally process the item from the workqueue, we might see a newer version
// of the Pod than the version which was responsible for triggering the update.
indexer, informer := cache.NewIndexerInformer(podListWatcher, &v1.Pod{}, , cache.ResourceEventHandlerFuncs{
AddFunc: func(obj interface{}) {
key, err := cache.MetaNamespaceKeyFunc(obj)
if err == nil {
queue.Add(key)
}
},
UpdateFunc: func(old interface{}, new interface{}) {
key, err := cache.MetaNamespaceKeyFunc(new)
if err == nil {
queue.Add(key)
}
},
DeleteFunc: func(obj interface{}) {
// IndexerInformer uses a delta queue, therefore for deletes we have to use this
// key function.
key, err := cache.DeletionHandlingMetaNamespaceKeyFunc(obj)
if err == nil {
queue.Add(key)
}
},
}, cache.Indexers{}) controller := NewController(queue, indexer, informer) // We can now warm up the cache for initial synchronization.
// Let's suppose that we knew about a pod "mypod" on our last run, therefore add it to the cache. // If this pod is not there anymore, the controller will be notified about the removal after the // cache has synchronized. indexer.Add(&v1.Pod{ ObjectMeta: meta_v1.ObjectMeta{ Name: "mypod", Namespace: v1.NamespaceDefault, }, }) // Now let's start the controller
stop := make(chan struct{})
defer close(stop)
go controller.Run(, stop) // Wait forever
select {}
}

Kubernetes 编写自定义 controller的更多相关文章

  1. k8s自定义controller设计与实现

    k8s自定义controller设计与实现 创建CRD 登录可以执行kubectl命令的机器,创建student.yaml apiVersion: apiextensions.k8s.io/v1bet ...

  2. 用mel编写自定义节点的属性编辑器界面

    用mel编写自定义节点的属性编辑器界面比较麻烦,而且网上例子又少,下面给出一个范例,说明基本的格式 // 初始化节点时调用 global proc initControl(string $attrNa ...

  3. MVC自定义过滤器,自定义Area过滤器,自定义Controller,Action甚至是ViewData过滤器

    实现MVC自定义过滤器,自定义Area过滤器,自定义Controller,Action甚至是ViewData过滤器 MVC开发中几种以AOP方式实现的Filters是非常好用的,默认情况下,我们通过A ...

  4. django “如何”系列4:如何编写自定义模板标签和过滤器

    django的模板系统自带了一系列的内建标签和过滤器,一般情况下可以满足你的要求,如果觉得需更精准的模板标签或者过滤器,你可以自己编写模板标签和过滤器,然后使用{% load %}标签使用他们. 代码 ...

  5. RobotFramework自动化测试框架-使用Python编写自定义的RobotFramework Lib

    使用Python构建Lib工程 可以用来开发Python Lib的IDE工具有很多,常见的有Pycharm,Eclipse with PyDev插件等,而且在RobotFramework官网中也已经提 ...

  6. SpringBoot编写自定义的starter 专题

    What’s in a name All official starters follow a similar naming pattern; spring-boot-starter-*, where ...

  7. kubernetes nginx ingress controller部署

    Kubernetes nginx ingress controller部署 1.下载kubernetes nginx的yaml文件 Wget https://raw.githubusercontent ...

  8. SpringBoot编写自定义配置信息

    ⒈编写自定义配置类 1.浏览器配置 package cn.coreqi.security.properties; public class BrowserProperties { private St ...

  9. R语言-编写自定义函数 ZZ

    一.函数构造器 每一个R函数都包括三个部分:函数名,程序主体以及参数集合,在编写自定义R函数时,需要将三个部分各自储存在一个R对象中.这里需要使用function函数,形如: my_function& ...

随机推荐

  1. python基础--闭包、装饰器

    装饰器的详细使用 (1)小知识点补充 在这里我们先学一个简单的知识点. li = ['alex', '银角', '女神', 'egon', '太白'] for i in enumerate(li): ...

  2. SpringBoot-JPA删除不成功,只执行了查询语句

    今天使用JPA自定义了一个删除方法deleteByUserIdAndCommentId发现并没有删除掉对应的数据,只执行了查询语句 Hibernate: select good0_.id as id1 ...

  3. matplotlib绘制子图

    fig,subs = plt.subplots(2,2) subs[0][0].plot(data_math_C1) subs[0][0].set_title('C_1 曲线') subs[0][1] ...

  4. 提取txt文本有效内容

    原理: 1.使用足够多的垃圾邮件和非垃圾邮件的内容作为训练集 2.读取全部训练集 删除其中的干扰字符 [ ] ,* . 进行分词 删除长度为 1 的单个字符 3.统计全部训练集中每个有效词汇的出现次数 ...

  5. PHP fileowner() 函数

    定义和用法 fileowner() 函数返回指定文件的用户 ID(所有者). 如果成功,该函数返回用户 ID.如果失败,则返回 FALSE. 语法 fileowner(filename) 参数 描述 ...

  6. 使用pdf.js实现前端页面预览pdf文档,解决了跨域请求

    pdf.js主要包含两个库文件,一个pdf.js和一个pdf.worker.js,,一个负责API解析,一个负责核心解析 官网地址:http://mozilla.github.io/pdf.js/ 下 ...

  7. CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性

    LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...

  8. Spring学习总结(8)-接口多个实现类的动态调用

    需求描述:当一个接口有2个以上的实现类时,调用方需要根据参数选择只其中一个实现类 Spring版本:5.1.8.RELEASE 1. 接口和实现类 /** * 接口 */ public interfa ...

  9. 数位DP 学习笔记

    前言:鸣谢https://www.luogu.com.cn/blog/virus2017/shuweidp.感谢大佬orz ----------------------------- [引入] 首先要 ...

  10. Python生成测试数据-Faker(非LOL选手-李相赫)

    Faker介绍 官方文档:https://faker.readthedocs.io/en/master/ Faker is a Python package that generates fake d ...