题目描述

BESSIE准备用从牛棚跑到池塘的方法来锻炼. 但是因为她懒,她只准备沿着下坡的路跑到池塘, 然后走回牛棚. BESSIE也不想跑得太远,所以她想走最短的路经. 农场上一共有M (1 <= M <= 10,000)条路, 每条路连接两个用1..N(1 <= N <= 1000)标号的地点. 更方便的是,如果X>Y,则地点X的高度大于地点Y的高度. 地点N是BESSIE的牛棚;地点1是池塘. 很快, BESSIE厌倦了一直走同一条路.所以她想走不同的路,更明确地讲,她想找出K (1 <= K <= 100)条不同的路经.为了避免过度劳累,她想使这K条路经为最短的K条路经. 请帮助BESSIE找出这K条最短路经的长度.你的程序需要读入农场的地图, 一些从X_i到Y_i 的路经和它们的长度(X_i, Y_i, D_i). 所有(X_i, Y_i, D_i)满足(1 <= Y_i < X_i; Y_i < X_i <= N, 1 <= D_i <= 1,000,000).

输入格式

第1行: 3个数: N, M, 和K

第 2..M+1行: 第 i+1 行包含3个数 X_i, Y_i, 和 D_i, 表示一条下坡的路.

输出格式

第1..K行: 第i行包含第i最短路经的长度,或-1如果这样的路经不存在.如果多条路经有同样的长度,请注意将这些长度逐一列出.


题意就是,求出给定图的前k短的n到1的路径,题目中的高度关系指明了图是有向的。

所以我们可以用A*来求k短路。

设计估价函数f。秉持f永远不大于真实值的原则,我们可以建个反图,把所有点到终点的最短路作为估计值,这样无论k等于多少时真实值都不会小于估计值。

然后跑A*,每次终点被取出时就输出此时的距离。注意如果取出次数不足k要用-1补足。

时间复杂度上限为O(K * (N+M)log(N+M)),但由于启发式,远远达不到这个程度。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define maxn 1001
#define maxm 100001
using namespace std; struct graph{
struct edge{
int to,dis,next;
edge(){}
edge(const int &_to,const int &_dis,const int &_next){ to=_to,dis=_dis,next=_next; }
}e[maxm];
int head[maxn],k;
inline void init(){ memset(head,-1,sizeof head); }
inline void add(const int &u,const int &v,const int &w){ e[k]=edge(v,w,head[u]); head[u]=k++; }
}a,b; int f[maxn];
bool vis[maxn];
int n,m,s,K; struct set_elmt{
int id,dis;
set_elmt(){}
set_elmt(const int &_dis,const int &_id){ id=_id,dis=_dis; }
bool operator<(const set_elmt &x)const{ return dis>x.dis; }
};//Dijkstra的优先级 struct node{
int id,dis;
node(){}
node(const int &_dis,const int &_id){ id=_id,dis=_dis; }
bool operator<(const node &x)const{ return dis+f[id]>x.dis+f[x.id]; }
};//A*的优先级 inline int read(){
register int x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
} inline void dijkstra(){
memset(f,0x3f,sizeof f);
priority_queue<set_elmt> q;
q.push(set_elmt(0,1)),f[1]=0; while(q.size()){
int u=q.top().id; q.pop();
if(vis[u]) continue; vis[u]=true;
for(register int i=b.head[u];~i;i=b.e[i].next){
int v=b.e[i].to;
if(f[v]>f[u]+b.e[i].dis) f[v]=f[u]+b.e[i].dis,q.push(set_elmt(f[v],v));
}
}
} inline void astar(){
priority_queue<node> q;
q.push(node(0,n));
while(q.size()){
int u=q.top().id,w=q.top().dis; q.pop();
if(u==1){ printf("%d\n",w); if(--K==0) return; }
for(register int i=a.head[u];~i;i=a.e[i].next){
int v=a.e[i].to;
q.push(node(w+a.e[i].dis,v));
}
}
while(K--) puts("-1");
} int main(){
a.init(),b.init();
n=read(),m=read(),K=read();
for(register int i=1;i<=m;i++){
int u=read(),v=read(),w=read();
a.add(u,v,w),b.add(v,u,w);//b为反图
}
dijkstra(),astar();
return 0;
}

[Usaco2008 Mar]牛跑步的更多相关文章

  1. Bzoj 1598: [Usaco2008 Mar]牛跑步 dijkstra,堆,K短路,A*

    1598: [Usaco2008 Mar]牛跑步 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 427  Solved: 246[Submit][St ...

  2. bzoj 1598: [Usaco2008 Mar]牛跑步 [k短路 A*] [学习笔记]

    1598: [Usaco2008 Mar]牛跑步 题意:k短路 ~~貌似A*的题目除了x数码就是k短路~~ \[ f(x) = g(x) + h(x) \] \(g(x)\)为到达当前状态实际代价,\ ...

  3. BZOJ_1598_[Usaco2008 Mar]牛跑步_A*

    BZOJ_1598_[Usaco2008 Mar]牛跑步_A* Description BESSIE准备用从牛棚跑到池塘的方法来锻炼. 但是因为她懒,她只准备沿着下坡的路跑到池塘, 然后走回牛棚. B ...

  4. bzoj 1598: [Usaco2008 Mar]牛跑步 -- 第k短路,A*

    1598: [Usaco2008 Mar]牛跑步 Time Limit: 10 Sec  Memory Limit: 162 MB Description BESSIE准备用从牛棚跑到池塘的方法来锻炼 ...

  5. K短路 (A*算法) [Usaco2008 Mar]牛跑步&[Sdoi2010]魔法猪学院

    A*属于搜索的一种,启发式搜索,即:每次搜索时加一个估价函数 这个算法可以用来解决K短路问题,常用的估价函数是:已经走过的距离+期望上最短的距离 通常和Dijkstra一起解决K短路 BZOJ1598 ...

  6. 【BZOJ】1598: [Usaco2008 Mar]牛跑步

    [题意]给定有向图,边严格从大编号指向小编号,求前k短路.n<=1000,m<=10000,k<=100. [算法]归并+拓扑排序||A*求第k短路 [题解]因为此题自带拓扑序的特殊 ...

  7. BZOJ1598: [Usaco2008 Mar]牛跑步

    传送门 K短路,普遍的算法是采用AStar求解,先建立反向边跑一遍dij,或者spfa什么的.跑出反向边的距离就可以看为估价函数中的$h()$.设$dist$为当前已经走过的距离,那么$f(node) ...

  8. bzoj:1598: [Usaco2008 Mar]牛跑步

    Description BESSIE准备用从牛棚跑到池塘的方法来锻炼. 但是因为她懒,她只准备沿着下坡的路跑到池塘, 然后走回牛棚. BESSIE也不想跑得太远,所以她想走最短的路经. 农场上一共有M ...

  9. 【bzoj1598】【 [Usaco2008 Mar]牛跑步】启发式搜索思路+spfa

    (上不了p站我要死了,侵权度娘背锅) 最近复习搜索,先从启发式搜索来吧. 感觉启发式搜索这玩意挺玄学的,先从其思想入手,做一道经典的K短路. Description BESSIE准备用从牛棚跑到池塘的 ...

  10. bzoj 1598: [Usaco2008 Mar]牛跑步【A*K短路】

    A*K短路模板,详见https://blog.csdn.net/z_mendez/article/details/47057461 算法流程: 把有向图全建成反向边,跑一遍所有点到t的最短路记为dis ...

随机推荐

  1. Java8中执行js脚本

    代码中除了callJSFunctionFromFile函数,其他均转载于文章JDK1.8中如何用ScriptEngine动态执行JS import jdk.nashorn.api.scripting. ...

  2. 微服务开发的最大痛点-分布式事务SEATA入门简介

    前言 在微服务开发中,存在诸多的开发痛点,例如分布式事务.全链路跟踪.限流降级和服务平滑上下线等.而在这其中,分布式事务是最让开发者头痛的.那分布式事务是什么呢? 分布式事务就是指事务的参与者.支持事 ...

  3. SSCTF2020 RE2

    SSCTF2020 RE2 有时间做了一下SSCTF 2020的re2 附件地址: 链接:https://pan.baidu.com/s/1k5SuiJIHJzgYZVbc9hX8ZA 提取码:lyc ...

  4. 【Idea插件】kotlin的orm框架一键生成代码框架

    @font-face { font-family: octicons-link; src: url("data:font/woff;charset=utf-8;base64,d09GRgAB ...

  5. 死磕以太坊源码分析之downloader同步

    死磕以太坊源码分析之downloader同步 需要配合注释代码看:https://github.com/blockchainGuide/ 这篇文章篇幅较长,能看下去的是条汉子,建议收藏 希望读者在阅读 ...

  6. Python实现多个pdf文件合并

    背景 由于工作原因,经常需要将多个pdf文件合并后打印,有时候上网找免费合并工具比较麻烦(公司内网不能访问公网),于是决定搞个小工具. 具体实现 需要安装 PyPDF2 pip install PyP ...

  7. BST和DST简单的matlab程序(图的广度和深度遍历)

    图的广度和深度遍历,具体内容教材有 clc;clear all;close all; %初始化邻接压缩表compressTable=[1 2;1 3;1 4;2 4;2 5;3 6;4 6;4 7]; ...

  8. Python三个处理excel表格的库

    三个向excel表格写入数的库:xlwt,xlsxwriter,openpyxl,代码如下: 1 #第一个库,xlwt,不能写超过256列的表格 2 import xlwt 3 4 #新建workbo ...

  9. OC 大数组分割成由小数组重新组合的新数组

    NSLog(@"++++%@",[self seprateBigArrBySize:3 BigArr:@[@"1",@"2",@" ...

  10. Pygame的简单总结

    Pygame learn from mooc 私货:在调用函数时,可以 1.import tkinter (不过在使用时还要加前缀如tkinter.Tk()) 2.import tkinter as ...