众所周知,JavaScript 浮点数运算时经常遇到会 0.000000001 和 0.999999999 这样奇怪的结果,如 0.1+0.2=0.300000000000000041-0.9=0.09999999999999998,很多人知道这是浮点数误差问题,但具体就说不清楚了。本文帮你理清这背后的原理以及解决方案,还会向你解释JS中的大数危机和四则运算中会遇到的坑。

浮点数的存储

首先要搞清楚 JavaScript 如何存储小数。和其它语言如 Java 和 Python 不同,JavaScript 中所有数字包括整数和小数都只有一种类型 — Number。它的实现遵循 IEEE 754 标准,使用 64 位固定长度来表示,也就是标准的 double 双精度浮点数(相关的还有float 32位单精度)。计算机组成原理中有过详细介绍,如果你不记得也没关系。

这样的存储结构优点是可以归一化处理整数和小数,节省存储空间。

64位比特又可分为三个部分:

  • 符号位S:第 1 位是正负数符号位(sign),0代表正数,1代表负数
  • 指数位E:中间的 11 位存储指数(exponent),用来表示次方数
  • 尾数位M:最后的 52 位是尾数(mantissa),超出的部分自动进一舍零

实际数字就可以用以下公式来计算:
$ V = (-1)^{S}\times M \times 2^{E} $

注意以上的公式遵循科学计数法的规范,在十进制是为0<M<10,到二进行就是0<M<2。也就是说整数部分只能是1,所以可以被舍去,只保留后面的小数部分。如 4.5 转换成二进制就是 100.1,科学计数法表示是 1.001*2^2,舍去1后 M = 001。E是一个无符号整数,因为长度是11位,取值范围是 0~2047。但是科学计数法中的指数是可以为负数的,所以再减去一个中间数 1023,[0,1022]表示为负,[1024,2047] 表示为正。如4.5 的指数E = 1025,尾数M为 001。

最终的公式变成:

$ V = (-1)^{S}\times (M+1) \times 2^{E-1023} $

所以 4.5 最终表示为(M=001、E=1025):

下面再以 0.1 例解释浮点误差的原因, 0.1 转成二进制表示为 0.0001100110011001100(1100循环),1.100110011001100x2^-4,所以 E=-4+1023=1019;M 舍去首位的1,得到 100110011...。最终就是:

转化成十进制后为 0.100000000000000005551115123126,因此就出现了浮点误差。

为什么 0.1+0.2=0.30000000000000004

计算步骤为:

// 0.1 和 0.2 都转化成二进制后再进行运算
0.00011001100110011001100110011001100110011001100110011010 +
0.0011001100110011001100110011001100110011001100110011010 =
0.0100110011001100110011001100110011001100110011001100111 // 转成十进制正好是 0.30000000000000004

为什么 x=0.1 能得到 0.1

恭喜你到了看山不是山的境界。因为 mantissa 固定长度是 52 位,再加上省略的一位,最多可以表示的数是 2^53=9007199254740992,对应科学计数尾数是 9.007199254740992,这也是 JS 最多能表示的精度。它的长度是 16,所以可以使用 toPrecision(16) 来做精度运算,超过的精度会自动做凑整处理。于是就有:

0.10000000000000000555.toPrecision(16)
// 返回 0.1000000000000000,去掉末尾的零后正好为 0.1 // 但你看到的 `0.1` 实际上并不是 `0.1`。不信你可用更高的精度试试:
0.1.toPrecision(21) = 0.100000000000000005551

大数危机

可能你已经隐约感觉到了,如果整数大于 9007199254740992 会出现什么情况呢?
由于 E 最大值是 1023,所以最大可以表示的整数是 2^1024 - 1,这就是能表示的最大整数。但你并不能这样计算这个数字,因为从 2^1024 开始就变成了 Infinity

> Math.pow(2, 1023)
8.98846567431158e+307 > Math.pow(2, 1024)
Infinity

那么对于 (2^53, 2^63) 之间的数会出现什么情况呢?

  • (2^53, 2^54) 之间的数会两个选一个,只能精确表示偶数
  • (2^54, 2^55) 之间的数会四个选一个,只能精确表示4个倍数
  • ... 依次跳过更多2的倍数

下面这张图能很好的表示 JavaScript 中浮点数和实数(Real Number)之间的对应关系。我们常用的 (-2^53, 2^53) 只是最中间非常小的一部分,越往两边越稀疏越不精确。

在淘宝早期的订单系统中把订单号当作数字处理,后来随意订单号暴增,已经超过了
9007199254740992,最终的解法是把订单号改成字符串处理。

要想解决大数的问题你可以引用第三方库 bignumber.js,原理是把所有数字当作字符串,重新实现了计算逻辑,缺点是性能比原生的差很多。所以原生支持大数就很有必要了,现在 TC39 已经有一个 Stage 3 的提案 proposal bigint,大数问题有问彻底解决。

toPrecision vs toFixed

数据处理时,这两个函数很容易混淆。它们的共同点是把数字转成字符串供展示使用。注意在计算的中间过程不要使用,只用于最终结果。

不同点就需要注意一下:

  • toPrecision 是处理精度,精度是从左至右第一个不为0的数开始数起。
  • toFixed 是小数点后指定位数取整,从小数点开始数起。

两者都能对多余数字做凑整处理,也有些人用 toFixed 来做四舍五入,但一定要知道它是有 Bug 的。

如:1.005.toFixed(2) 返回的是 1.00 而不是 1.01

原因: 1.005 实际对应的数字是 1.00499999999999989,在四舍五入时全部被舍去!

解法:使用专业的四舍五入函数 Math.round() 来处理。但 Math.round(1.005 * 100) / 100 还是不行,因为 1.005 * 100 = 100.49999999999999。还需要把乘法和除法精度误差都解决后再使用 Math.round。可以使用后面介绍的 number-precision#round 方法来解决。

解决方案

回到最关心的问题:如何解决浮点误差。首先,理论上用有限的空间来存储无限的小数是不可能保证精确的,但我们可以处理一下得到我们期望的结果。

数据展示类

当你拿到 1.4000000000000001 这样的数据要展示时,建议使用 toPrecision 凑整并 parseFloat 转成数字后再显示,如下:

parseFloat(1.4000000000000001.toPrecision(12)) === 1.4  // True

封装成方法就是:

function strip(num, precision = 12) {
return +parseFloat(num.toPrecision(precision));
}

为什么选择 12 做为默认精度?这是一个经验的选择,一般选12就能解决掉大部分0001和0009问题,而且大部分情况下也够用了,如果你需要更精确可以调高。

数据运算类

对于运算类操作,如 +-*/,就不能使用 toPrecision 了。正确的做法是把小数转成整数后再运算。以加法为例:

/**
* 精确加法
*/
function add(num1, num2) {
const num1Digits = (num1.toString().split('.')[1] || '').length;
const num2Digits = (num2.toString().split('.')[1] || '').length;
const baseNum = Math.pow(10, Math.max(num1Digits, num2Digits));
return (num1 * baseNum + num2 * baseNum) / baseNum;
}

以上方法能适用于大部分场景。遇到科学计数法如 2.3e+1(当数字精度大于21时,数字会强制转为科学计数法形式显示)时还需要特别处理一下。

能读到这里,说明你非常有耐心,那我就放个福利吧。遇到浮点数误差问题时可以直接使用
github.com/dt-fe/numbe…

完美支持浮点数的加减乘除、四舍五入等运算。非常小只有1K,远小于绝大多数同类库(如Math.js、BigDecimal.js),100%测试全覆盖,代码可读性强,不妨在你的应用里用起来!

参考并转载于:https://github.com/camsong/blog/issues/9

js 浮点数陷阱的更多相关文章

  1. js浮点数计算问题 + 金额大写转换

    一 js浮点数计算问题解决方案: 1.使用 NumberObject.toFixed(num) 方法 toFixed() 方法可把 Number 四舍五入为指定小数位数的数字. 2.较精度计算浮点数 ...

  2. JS浮点数运算BUG破法

    JS里,0.3*3 = 0.8999999999999999 破法1:((0.3*10)*3)/10 破法2:(0.3*3).toFixed(2)//保留两位小数 原因:js浮点数用的是IEEE754 ...

  3. js浮点数的计算

        js在计算浮点数时可能不够准确,会产生舍入误差的问题,这是使用基于IEEE745数值的浮点计算的通病,并非ECMAScript一家,其他使用相同数值格式的语言也存在这个问题.     这里讲一 ...

  4. JS浮点数运算Bug

    JS浮点数运算Bug的解决办法(转) 37.5*5.5=206.08 (JS算出来是这样的一个结果,我四舍五入取两位小数) 我先怀疑是四舍五入的问题,就直接用JS算了一个结果为:206.0849999 ...

  5. 实现js浮点数加、减、乘、除的精确计算(网上很多文章里的方法是不能解决所有js浮点数计算误差的)

    最近做项目,要用到js的加.减.乘.除的计算,发现js浮点数计算会有一些误差. 网上有很多文章都有js浮点数计算误差的解决方法,说能解决这个问题,But…….比如一个加法函数,如下: function ...

  6. 关于js浮点数计算精度不准确问题的解决办法

    今天在计算商品价格的时候再次遇到js浮点数计算出现误差的问题,以前就一直碰到这个问题,都是简单的使用tofixed方法进行处理一下,这对于一个程序员来说是及其不严谨的.因此在网上收集了一些处理浮点数精 ...

  7. js浮点数相加、减、乘、除精确计算

    js 浮点数计算时 ,无缘无辜 后边冒出一堆 小数点………… 貌似js本身的问题,类型不定?????? 只能自己写函数处理..  http://blog.csdn.net/w4bobo/article ...

  8. js浮点数乘除法

    JS在处理浮点数计算时经常会遇到精度的问题,上一篇博客封装了JS浮点数加减法的方法,这一次来封装一下js浮点数乘除法运算. 其实浮点除法的封装跟加减法的封装原理是一样,只是在第一次计算完后会再复位小数 ...

  9. 学以致用:手把手教你撸一个工具库并打包发布,顺便解决JS浮点数计算精度问题

    本文讲解的是怎么实现一个工具库并打包发布到npm给大家使用.本文实现的工具是一个分数计算器,大家考虑如下情况: \[ \sqrt{(((\frac{1}{3}+3.5)*\frac{2}{9}-\fr ...

随机推荐

  1. js--数组的filter()过滤方法的使用

    前言 你还在通过for循环遍历数组吗?你还在遍历之后一项一项的通过if判断过滤你需要的数据吗?你还在写着一大堆代码实现一个简单的过滤数据功能吗?那么,今天他来了.他就是这里要介绍的es6中数组filt ...

  2. Python 的 10 个开发技巧!太实用了

    1. 如何在运行状态查看源代码? 查看函数的源代码,我们通常会使用 IDE 来完成. 比如在 PyCharm 中,你可以 Ctrl + 鼠标点击 进入函数的源代码. 那如果没有 IDE 呢? 当我们想 ...

  3. 精尽Spring MVC源码分析 - ViewResolver 组件

    该系列文档是本人在学习 Spring MVC 的源码过程中总结下来的,可能对读者不太友好,请结合我的源码注释 Spring MVC 源码分析 GitHub 地址 进行阅读 Spring 版本:5.2. ...

  4. Flutter ListTile - Flutter每周一组件

    该文章属于[Flutter每周一组件]系列,其它组件可以查看该系列下的文章,该系列会不间断更新:所有组件的demo已经上传值Github: https://github.com/xj124456/fl ...

  5. bootstrap(一)栅格系统

    中文网:http://www.bootcss.com/ 官网:http://v3.bootcss.com/ 需要准备:离线手册  和  软件包 项目中引用bootstrap.min.js压缩版和boo ...

  6. JavaScript 获取数组对象中某一值封装为数组

    1.获取数组对象中某一值封装为数组(一) data = [["2000-06-05",116],["2000-06-06",129]]; var dateLis ...

  7. [Machine Learning] 逻辑回归 (Logistic Regression) -分类问题-逻辑回归-正则化

    在之前的问题讨论中,研究的都是连续值,即y的输出是一个连续的值.但是在分类问题中,要预测的值是离散的值,就是预测的结果是否属于某一个类.例如:判断一封电子邮件是否是垃圾邮件:判断一次金融交易是否是欺诈 ...

  8. Thread.join详解

    /** * 如果某个线程在另一个线程t上调用t.join:那么此线程将被挂起,直到目标t线程的结束才恢复即t.isAlive返回为假 * * @date:2018年6月27日 * @author:zh ...

  9. spring之ApplicationEvent 事件驱动

    什么是ApplicationContext? 它是Spring的核心,Context我们通常解释为上下文环境,但是理解成容器会更好些. ApplicationContext则是应用的容器. Sprin ...

  10. java HttpClicent网络请求与解析

    HttpClicent是Apache下的一个子项目,文档齐全,详见官网:http://hc.apache.org/httpcomponents-client-4.5.x/quickstart.html ...