T1 sign

题目大意:给出一棵 N 个节点的树,求所有起点为叶节点的有向路径,其 上每一条边权值和的和。N<=10000

水题。考试的时候毒瘤出题人(学长orz)把读入顺序改了一下,于是很多人爆零(包括我QAQ。

先dfs序把以$i$为根的子树大小$size[i]$和所含叶子结点个数$s[i]$求出。考虑每条边对答案的贡献。

  1.子树里的叶子结点往外走,这一部分的贡献为$s[i]*(n-size[i])*dis$

  2.子树外的叶子结点往里走,这一部分的贡献为$(sum-s[i])*size[i]*dis$,$sum$指叶子结点个数。

然后枚举边累加就好。

代码:

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,ans,du[],size[],sum,root,ss[],tot;
int head[],cnt;
struct node
{
int next,to,dis;
}edge[];
struct edge
{
int from,to,dis;
}a[];
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void add(int from,int to,int dis)
{
edge[++cnt].next=head[from];
edge[cnt].to=to;
edge[cnt].dis=dis;
head[from]=cnt;
}
inline void dfs(int now,int fa)
{
size[now]=;
if (du[now]==) ss[now]=;
for (int i=head[now];i;i=edge[i].next)
{
int to=edge[i].to;
if (to==fa) continue;
a[++tot].from=now,a[tot].to=to,a[tot].dis=edge[i].dis;
dfs(to,now);
size[now]+=size[to];
ss[now]+=ss[to];
}
}
signed main()
{
n=read();
for (int i=;i<n;i++)
{
int x=read(),y=read(),z=read();
add(y,z,x);add(z,y,x);du[z]++;du[y]++;
}
for (int i=;i<=n;i++)
{
if (du[i]>) root=i;
else sum++;
}
dfs(root,);
for (int i=;i<n;i++)
ans+=ss[a[i].to]*(n-size[a[i].to])*a[i].dis+size[a[i].to]*(sum-ss[a[i].to])*a[i].dis;
printf("%lld",ans);
return ;
}

T2 map

题目大意:给定一张含有$n$个点的无向完全图,从$1$号点出发,每秒随机走一条边。$q$次询问,每次询问$t_i$秒时在点$1$的概率。

对于60%的数据,$n,q,t\leq 10^5$

对于100%的数据,$n,q,t\leq 10^{18}$

60分的很好想。设$f[i]$表示第$i$秒时在点$1$的概率,$g[i]$表示第$i$秒时不在点$1$的概率。易得到:

$f[i]=g[i-1]*\frac{1}{n-1}*(n-1)=g[i-1]$

$g[i]=f[i-1]*\frac{1}{n-1}+g[i-1]*\frac{n-2}{n-1}$

然后考试的时候就想到这里……60pts。正解只需要再往下推一步。

变换一下形式:$g[i]=g[i-2]*\frac{1}{n-1}+g[i-1]*\frac{n-2}{n-1}$

移项,得到:$g[i]-g[i-1]=-\frac{1}{n-1}*(g[i-1]-g[i-2])$

然后就是等比数列化简,得到通项公式:$g[i]=\frac{(n-1)^i-(-1)^i}{n*(n-1)^{i-1}},f[i]=\frac{(n-1)^{i-1}-(-1)^i}{n*(n-1)^{i-1}}$

最后快速幂求逆元就好。注意要$n$要模$mod$。时间复杂度$O(q\log n)$。

代码:

#include<bits/stdc++.h>
#define int unsigned long long
using namespace std;
const int mod=;
int n,t,q;
inline int qpow(int x,int y)
{
int res=;x%=mod;
while(y>){
if (y%==) res=res*x%mod;res%=mod;
x=x*x%mod;
y>>=;
}
return res%mod;
}
signed main()
{
scanf("%lld%lld",&n,&q);n%=mod;
while(q--)
{
scanf("%lld",&t);
if (t==){
printf("1\n");
continue;
}
int x=qpow(n-,t-)%mod;
if (t&) printf("%lld\n",((x-)%mod*qpow(n*x,mod-)%mod)%mod);
else printf("%lld\n",((x+)%mod*qpow(x*n,mod-)%mod)%mod);
}
return ;
}

T3 【PA2011】Journeys

题目链接

题目大意:点从$1-n$标号。给定$[l1,r1]$和$[l2,r2]$,表示$[l1,r1]$内的点与$[l2,r2]$内任意一点都有长度为$1$的边。求点$s$的单源最短路径。

线段树优化建图模板题。

建立一棵入树,一棵出树,对于每次连边建两个虚点,在其间连一条权为1的边;然后从出树连出来,连进去入树,边权均为0。注意边是双向的,因此需要做两遍。

最短路不需要 Dijkstra,只需要 01BFS。时间复杂度$O(n\log n)$。

关于各种图的优化技巧可以看大佬的博客orz

代码:

#include<bits/stdc++.h>
using namespace std;
int n,m,S,head[],cnt,tot,dis[],ls[],rs[];
struct edge
{
int next,to,dis;
}edge[];
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
void addedge(int from,int to,int dis)
{
edge[++cnt].next=head[from];
edge[cnt].to=to;
edge[cnt].dis=dis;
head[from]=cnt;
}
void Build(int &p,int &q,int l,int r) {
if(l==r){
p=l,q=l;
return ;
}
if(!p)p=++tot;
if(!q)q=++tot;
int mid=(l+r)/;
Build(ls[p],ls[q],l,mid),addedge(ls[p],p,),addedge(q,ls[q],);
Build(rs[p],rs[q],mid+,r),addedge(rs[p],p,),addedge(q,rs[q],);
}
void Add(int p,int l,int r,int x,int y,int z,int flag) {
if(x<=l&&r<=y) {
if(flag)addedge(z,p,);
else addedge(p,z,);
return ;
}
int mid=(l+r)/;
if(x<=mid)Add(ls[p],l,mid,x,y,z,flag);
if(mid<y)Add(rs[p],mid+,r,x,y,z,flag);
}
void Dijkstra() {
memset(dis,0x3f,sizeof(dis));
deque<int> q;
dis[S]=;
q.push_back(S);
while(!q.empty()) {
int now=q.front();
q.pop_front();
for(int i=head[now]; i; i=edge[i].next) {
int y=edge[i].to,v=edge[i].dis;
if(dis[y]>dis[now]+v) {
dis[y]=dis[now]+v;
if(v)q.push_back(y);
else q.push_front(y);
}
}
}
for(int i=;i<=n;i++)printf("%d\n",dis[i]);
}
int main()
{
n=read(),m=read(),S=read(),tot=n;
int root1=,root2=;
Build(root1,root2,,n);
while(m--){
int x=read(),y=read(),z=read(),w=read(),a=++tot,b=++tot;
addedge(a,b,);
Add(root1,,n,x,y,a,);
Add(root2,,n,z,w,b,);
a=++tot,b=++tot;
addedge(a,b,);
Add(root1,,n,z,w,a,);
Add(root2,,n,x,y,b,);
}
Dijkstra();
return ;
}

7月13日考试 题解(DFS序+期望+线段树优化建图)的更多相关文章

  1. bzoj5017 炸弹 (线段树优化建图+tarjan+拓扑序dp)

    直接建图边数太多,用线段树优化一下 然后缩点,记下来每个点里有多少个炸弹 然后按拓扑序反向dp一下就行了 #include<bits/stdc++.h> #define pa pair&l ...

  2. 6月28日考试 题解(GCD约分+动态规划+树状数组二维偏序)

    前言:考的一般般吧……T3暴力没打上来挺可惜的,到手的75分没了. ---------------------------------- T1 [JZOJ4745]看电影 Description 听说 ...

  3. [bzoj3073] Journeys 题解(线段树优化建图)

    Description Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建 ...

  4. bzoj3306: 树(dfs序+倍增+线段树)

    比较傻逼的一道题... 显然求子树最小值就是求出dfs序用线段树维护嘛 换根的时候树的形态不会改变,所以我们可以根据相对于根的位置分类讨论. 如果询问的x是根就直接输出整棵树的最小值. 如果询问的x是 ...

  5. [十二省联考2019]字符串问题——后缀自动机+parent树优化建图+拓扑序DP+倍增

    题目链接: [十二省联考2019]字符串问题 首先考虑最暴力的做法就是对于每个$B$串存一下它是哪些$A$串的前缀,然后按每组支配关系连边,做一遍拓扑序DP即可. 但即使忽略判断前缀的时间,光是连边的 ...

  6. bzoj2819 DFS序 + LCA + 线段树

    https://www.lydsy.com/JudgeOnline/problem.php?id=2819 题意:树上单点修改及区间异或和查询. 思维难度不高,但是题比较硬核. 整体思路是维护每一个结 ...

  7. Luogu P2982 [USACO10FEB]慢下来 Slowing down | dfs序、线段树

    题目链接 题目大意: 有一棵N个结点树和N头奶牛,一开始所有奶牛都在一号结点,奶牛们将按从编号1到编号N的顺序依次前往自己的目的地,求每头奶牛在去往自己目的地的途中将会经过多少已经有奶牛的结点. 题解 ...

  8. Codeforces Round #200 (Div. 1) D. Water Tree(dfs序加线段树)

    思路: dfs序其实是很水的东西.  和树链剖分一样, 都是对树链的hash. 该题做法是:每次对子树全部赋值为1,对一个点赋值为0,查询子树最小值. 该题需要注意的是:当我们对一棵子树全都赋值为1的 ...

  9. Codeforces 877E - Danil and a Part-time Job(dfs序+线段树)

    877E - Danil and a Part-time Job 思路:dfs序+线段树 dfs序:http://blog.csdn.net/qq_24489717/article/details/5 ...

随机推荐

  1. 从0开始,手把手教你用Vue开发一个答题App

    项目演示 项目演示 项目源码 项目源码 教程说明 本教程适合对Vue基础知识有一点了解,但不懂得综合运用,还未曾使用Vue从头开发过一个小型App的读者.本教程不对所有的Vue知识点进行讲解,而是手把 ...

  2. python 面向对象专题(四):封装、多态、鸭子类型、类的约束、super

    https://www.cnblogs.com/liubing8/p/11321099.html 目录 Python面向对象04 /封装.多态.鸭子类型.类的约束.super 1. 封装 2. 多态 ...

  3. softmax、cross entropy和softmax loss学习笔记

    之前做手写数字识别时,接触到softmax网络,知道其是全连接层,但没有搞清楚它的实现方式,今天学习Alexnet网络,又接触到了softmax,果断仔细研究研究,有了softmax,损失函数自然不可 ...

  4. 【Nginx】如何格式化日志并推送到远程服务器?看完原来很简单!!

    写在前面 Nginx作为最常用的反向代理和负载均衡服务器,被广泛的应用在众多互联网项目的前置服务中,很多互联网项目直接将Nginx服务器作为整个项目的流量入口.这就使得我们可以通过对Nginx服务器日 ...

  5. MySQL 高级性能优化架构 千万级高并发交易一致性系统基础

    一.MySQL体系架构 由图,可以看出MySQL最上层是连接组件.下面服务器是由连接池.管理服务和工具组件.SQL接口.查询解析器.查询优化器.缓存.存储引擎.文件系统组成. 1.连接池 管理.缓冲用 ...

  6. elementUI form表单验证不通过的三个原因

    <el-form :model="form" :rules="rules"> <el-form-item prop="input&q ...

  7. [jvm] -- 类加载过程篇

    类加载过程 系统加载 Class 类型的文件主要三步 加载 通过全类名获取定义此类的二进制字节流 将字节流所代表的静态存储结构转换为方法区的运行时数据结构 在内存中生成一个代表该类的 Class对象, ...

  8. webview访问URL

    //    // Do any additional setup after loading the view. //    //创建WKWebView //    WKWebView *web = ...

  9. 大数据篇:一文读懂@数据仓库(PPT文字版)

    大数据篇:一文读懂@数据仓库 1 网络词汇总结 1.1 数据中台 数据中台是聚合和治理跨域数据,将数据抽象封装成服务,提供给前台以业务价值的逻辑概念. 数据中台是一套可持续"让企业的数据用起 ...

  10. BUUCTF-web Easyweb

    从这道题学到了挺多 一打开题目就是登陆页面,遂扫描文件检测是否存在文件泄露 用dirsearch扫出了robots.txt,.DS_Store和其他php.DS_Store没有可用信息(buuoj的题 ...