题解-洛谷P6788 「EZEC-3」四月樱花
题面
给定 \(n,p\),求:
\[ans=\left(\prod_{x=1}^n\prod_{y|x}\frac{y^{d(y)}}{\prod_{z|y}(z+1)^2}\right)\bmod p
\]
数据范围:\(1\le n\le 2.5\cdot 10^9\),\(9.9\cdot 10^8<p<1.1\cdot 10^9\)。
蒟蒻语
一道题撑起一场月赛,良心又劲爆。
蒟蒻解
开局一波猛操作:
\]
\]
\(\color{#dd6622}{(1)}\) 的原理就是 \(\sum_{z|y,y|n}=d(\frac{n}{z})\),其中 \(sumd(n)=\sum_{i=1}^n d(i)\)。
然后就是要求:
\]
很明显 \(\frac{z}{z+1}\) 的前缀积是可以 \(\Theta(\log n)\) 求的,问题是怎么求 \(sumd(\lfloor\frac{n}{z}\rfloor)\)。
其实是可以分块套分块的,时间复杂度 \(\Theta(n^{\frac 34}+\sqrt{n}\log n)\),勉强卡得过去。
但是有两种时间复杂度 \(\Theta(n^{\frac 23}+\sqrt{n}\log n)\) 的方法:
第一种: 由 @alpha1022 巨佬提供,先筛出 \(n^{\frac 23}\) 的 \(sumd\),然后剩下分块套分块。
第二种:
蒟蒻的做法,看到数据范围和 \(\Theta(n^{\frac 23})\) 想到杜教筛。
很明显 \(d\) 这个东西不能直接筛,但是有一个炫酷的魔术:杜教套杜教。
首先 \(f=d=1*1\),所以可以令 \(g=\mu\),\(f*g=1*1*\mu=1\),满足 \(f*g\) 前缀和可以速速求,问题是要求 \(\mu\) 的前缀和。
于是再来一次:\(f=\mu\),\(g=1\),\(f*g=\mu*1=\epsilon\),就是杜教筛模板,随意筛。
至于具体怎么套可以看代码,考虑到这题只需要求 \(n\) 及 \(n\) 的根号分块的前缀和,所以可以预处理形杜教筛。
代码
//Data
using mint=unsigned int;
mint n,nn,mod,ans=1;
mint m(mint x){(x>=mod)&&(x%=mod);return x;}
mint p(mint x){(x>=mod-1)&&(x%=(mod-1));return x;}
void mm(mint&x){(x>=mod)&&(x%=mod);}
void pm(mint&x){(x>=mod-1)&&(x%=(mod-1));}
mint mt(mint x,mint y){return 1ll*x*y%mod;}
mint pt(mint x,mint y){return 1ll*x*y%(mod-1);}
mint Pow(mint a,mint x){mint res=1;for(;x;a=mt(a,a),x>>=1)if(x&1) res=mt(res,a);return res;}
//Sieve
const mint N=5841399+1;
bitset<N> np;
vector<mint> prime;
mint mc[N],d[N],mu[N];
void Sieve(){
np[1]=true,mc[1]=0,d[1]=mu[1]=1;
R(i,2,nn){
if(!np[i]) prime.pb(i),mc[i]=1,d[i]=2,mu[i]=mod-2;
for(mint p:prime){
if(!(i*p<nn)) break; np[i*p]=true;
if(i%p==0){mc[i*p]=mc[i]+1,d[i*p]=d[i]/(mc[i]+1)*(mc[i*p]+1),mu[i*p]=0;break;}
d[i*p]=d[i]*d[p],mu[i*p]=pt(mu[i],mu[p]),mc[i*p]=1;
}
}
R(i,2,nn) pm(d[i]+=d[i-1]),pm(mu[i]+=mu[i-1]);
}
//DuSieve
const mint iN=427+1;
mint dud[iN],dumu[iN];
bitset<iN> vis;
mint D(mint i){return i<nn?d[i]:dud[n/i];}
mint Mu(mint i){return i<nn?mu[i]:dumu[n/i];}
void DuSieve(mint i){
if(i<nn||vis[n/i]) return; vis[n/i]=true;
for(mint l=1,r;l<=i;l=r+1) r=i/(i/l),DuSieve(i/l),
pm(dumu[n/i]+=p(mod-1-pt(p(r-l+1),Mu(i/l)))); pm(dumu[n/i]+=1);
for(mint l=2,r;l<=i;l=r+1) r=i/(i/l),
pm(dud[n/i]+=p(mod-1-pt(p(mod-1+Mu(r)-Mu(l-1)),D(i/l)))); pm(dud[n/i]+=p(i));
//必须先筛 mu,筛 d 时会用到 mu(i)
}
//Main
int main(){
read(n),read(mod),nn=1+pow(n,0.72),Sieve(),DuSieve(n); //事实证明0.72最快,可以卡进1s
for(mint l=1,r;l<=n;l=r+1) r=n/(n/l),ans=mt(ans,Pow(mt(m(l),Pow(m(r+1),mod-2)),D(n/l)));
write(mt(ans,ans)),putchar(10);
return 0;
}
祝大家学习愉快!
题解-洛谷P6788 「EZEC-3」四月樱花的更多相关文章
- 洛谷比赛 「EZEC」 Round 4
洛谷比赛 「EZEC」 Round 4 T1 zrmpaul Loves Array 题目描述 小 Z 有一个下标从 \(1\) 开始并且长度为 \(n\) 的序列,初始时下标为 \(i\) 位置的数 ...
- 洛谷 P6788 - 「EZEC-3」四月樱花(整除分块)
题面传送门 题意: 求 \[\prod\limits_{x=1}^n\prod\limits_{y|x}\frac{y^{d(y)}}{\prod\limits_{z|y}z+1} \pmod{p} ...
- [洛谷P3701]「伪模板」主席树
题目大意:太暴力了,就不写了,看这儿 题解:对于每个$byx$的人,从源点向人连边,容量为此人的寿命. 对于每个手气君的人,从人向汇点连边,容量为此人的寿命. 对于每个$byx$的人与手气君的人,如果 ...
- LOJ 3119: 洛谷 P5400: 「CTS2019 | CTSC2019」随机立方体
题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\ ...
- LOJ 3120: 洛谷 P5401: 「CTS2019 | CTSC2019」珍珠
题目传送门:LOJ #3120. 题意简述: 称一个长度为 \(n\),元素取值为 \([1,D]\) 的整数序列是合法的,当且仅当其中能够选出至少 \(m\) 对相同元素(不能重复选出元素). 问合 ...
- 洛谷 P4710 「物理」平抛运动
洛谷 P4710 「物理」平抛运动 洛谷传送门 题目描述 小 F 回到班上,面对自己 28 / 110 的物理,感觉非常凉凉.他准备从最基础的力学学起. 如图,一个可以视为质点的小球在点 A(x_0, ...
- LOJ 2743(洛谷 4365) 「九省联考 2018」秘密袭击——整体DP+插值思想
题目:https://loj.ac/problem/2473 https://www.luogu.org/problemnew/show/P4365 参考:https://blog.csdn.net/ ...
- 洛谷 P7879 -「SWTR-07」How to AK NOI?(后缀自动机+线段树维护矩乘)
洛谷题面传送门 orz 一发出题人(话说我 AC 这道题的时候,出题人好像就坐在我的右侧呢/cy/cy) 考虑一个很 naive 的 DP,\(dp_i\) 表示 \([l,i]\) 之间的字符串是否 ...
- 洛谷 P7360 -「JZOI-1」红包(Min-Max 容斥+推式子)
洛谷题面传送门 hot tea. 首先注意到这个 \(\text{lcm}\) 特别棘手,并且这里的 \(k\) 大得离谱,我们也没办法直接枚举每个质因子的贡献来计算答案.不过考虑到如果我们把这里的 ...
随机推荐
- 单独编译一个ext4内核模块
当我们需要使用一个内核模块的时候,在当前使用版本内核编译的时候又没有加进去,在不改变内核版本的时候,再编译整个内核,可能会覆盖原来的内核,导致系统无法启动 现在我们能够单独选择需要的模块,然后加载进内 ...
- 关于多线程--网络编程 -- 注解反射的一点笔记(JAVA篇)
一 . 线程 java开启一个线程的方法(三种) 方法一:继承Thread类并New一个线程对象 步骤: 1):定义一个类A继承于Java.lang.Thread类. class TestThread ...
- Python_科学计算库
说明:若没有训练级联表,则需要相关级联表才能实现功能 文字识别 # -*- coding: utf-8 -*- """ 简介:用样本训练数据,再识别 "&quo ...
- Python 调用Get接口
import requests,jsonurl = 'http://localhost:30627/api/jobs/GetNuberId?id=2'req = requests.get(url)re ...
- 如何使用MathType输入贝塔符号?
在文档中使用公式,常常需要输入各种符号.比如要输入三角函数公式,那么就要输入三角函数中的阿尔法α.贝塔β等符号,那么要怎么打出这类符号呢? MathType作为强大的数学公式编辑器,可以用来编辑各种数 ...
- 关于iOS路径变化的解决方案
问题描述: 使用沙盒存储文件的时候,我们会保存文件的绝对路劲以便下次读取,但是发现一个现象,我们保存的文件,在第二次打开App去查找的时候,发现找不到了...... 查找原因: iOS8之后,苹果添加 ...
- Httprunner初步学习
一:简介 一直在技术博客上看到Httprunner测试框架,但始终不太明白这个框架的具体作用,今天就花点时间来初步学习了解一下. HttpRunner 是一款面向 HTTP(S) 协议的通用测试框架, ...
- iOS 索引列 使用详解
做苹果开发的朋友在地区列表可能会遇到在页面的右侧有一列类似与导航的索引列,这次有机会遇到了,细细研究了一下,原来没有想象中的高达上,只需要简单的几步就能做出自己的索引列.,关注我的博客的朋友可能会对这 ...
- Error response from daemon: driver failed programming external connectivity on endpoint mysql3308 (
Docker启动容器报错. 1. 错误描述 [root@localhost nginx]# docker start mysql3308 Error response from daemon: dri ...
- 【数据结构】关于前缀树(单词查找树,Trie)
前缀树的说明和用途 前缀树又叫单词查找树,Trie,是一类常用的数据结构,其特点是以空间换时间,在查找字符串时有极大的时间优势,其查找的时间复杂度与键的数量无关,在能找到时,最大的时间复杂度也仅为键的 ...