题解-CF1307G Cow and Exercise
给 \(n\) 点 \(m\) 边的带权有向图,边 \(i\) 为 \((u_i,v_i,w_i)\)。\(q\) 次询问,每次给 \(x_i\),问修改一些边使整张图的边权和增加 \(x_i\) 后最短路最大值(可以把边权修改为浮点数)。
数据范围:\(2\le n\le 50\),\(1\le m\le n\cdot (n-1)\),\(1\le u_i,v_i\le n\),\(1\le w_i\le 10^6\),\(1\le q\le 10^5\),\(0\le x_i\le 10^5\)。
学网络流不能错过的经典例题啊!这题的思想真是又巧妙又易懂又实用。
我写的题解如下,貌似废话很多。。。
如下图:
如果 \(x=0\),最短路最长为 \(7\)。
如果 \(x=1\),最短路最长为 \(8\)。\((1,4,3)\to(1,4,4)\)。
如果 \(x=2\),最短路最长为 \(9\)。\((1,4,3)\to(1,4,5)\)。
如果 \(x=3\),最短路最长为 \(9.5\)。\((1,4,3)\to(1,4,5.5)\),\((1,2,4)\to(1,2,4.5)\)。
如果 \(x=4\),最短路最长为 \(10\)。\((1,4,3)\to(1,4,6)\),\((1,2,4)\to(1,2,5)\)。
\(\cdots\)
直到 \(x=\infty\),都只需要改 \((1,4,3)\) 和 \((1,2,4)\) 两条边。
因为它们是图中三条路径的必经之路。
学过的人应该可以发现:它们便是无权图上的最小割边。
要使带权图最短路最长,修改最小割边是最优的。
将经过同一个最小割边的路径归为一个路径集。
如上图中,设经过 \((1,2,4)\) 的路径集为 \(S_1\),经过 \((1,4,3)\) 的路径集为 \(S_2\)。
当 \(0\le x\le 2\) 时,只需修改 \(S_2\) 的割边 \((1,4,3)\)。
当 \(3\le x\) 时,需要修改 \(S_1\) 和 \(S_2\) 的割边,并要使两个路径集的最短路径相等。
类推一下,根据平均的思想,可以得出:
无论 \(x\) 取何值,修改最短路径长度最短的 \(k\) 个路径集,并使它们修改后相等是最优的。
假设这 \(k\) 个路径集修改后的最短路径都为 \(L\),则应有对于任何未被修改割边的路径集,最短路径长度 \(\ge L\)。否则去修改这条路径必然更优。
所以就可以让费用流算法上路了,这题建议用 \(\tt EK\),因为这东西很乖的,一次就增广一个路径集。
回想一下 \(\tt EK\) 的套路:\(\tt Spfa\) 找到最短路,然后增广。
如果让网络流的边 \(flow_i=1,cost_i=w_i\),则有:
增广 \(k\) 次后,当前的 \(flow=k\),并且当前的 \(cost\) 为 \(k\) 个路径集的最短路长度和。
所以可以把每次增广后的 \(flow\) 和 \(cost\) 扔进 \(\tt vector\) 里。
然后对于每个询问,\(Res=\min\{\frac{cost_j+x}{flow_j}\}\)。
这时有个问题:要是 \(j\) 不等于最优的 \(k\) 怎么办?
有个很神奇的结论:对于 \(j=k\) 的情况,\(\frac{cost_j+x}{flow_j}\) 最小。
根据上面的结论,如果 \(j>k\),因为把最短路径更长的路径集也考虑进来了,所以 \(\frac{cost_j+x}{flow_j}>\frac{cost_k+x}{flow_k}\)。
如果 \(j<k\),那么修改完后这 \(j\) 个路径集的最短路径会 \(>\) 剩下未被修改的 \(k-j\) 个路径集,所以也可得这结论。
时间复杂度 \(\Theta(n^4+nq)\)。
- 代码
#include <bits/stdc++.h>
using namespace std;
//Start
typedef long long ll;
typedef double db;
#define mp(a,b) make_pair(a,b)
#define x first
#define y second
#define b(a) a.begin()
#define e(a) a.end()
#define sz(a) int((a).size())
#define pb(a) push_back(a)
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
//Data
const int N=50;
int n,m,q;
vector<pair<int,int>> fc;
//EK
int fn,s,t;
vector<int> e[N+7],to,fw,co;
void add(int u,int v,int f,int c){
e[u].pb(sz(to)),to.pb(v),fw.pb(f),co.pb(+c);
e[v].pb(sz(to)),to.pb(u),fw.pb(0),co.pb(-c);
}
int dep[N+7],p[N+7],vis[N+7];
int Bfs(){
for(int i=1;i<=fn;i++) dep[i]=inf,vis[i]=0;
queue<int> q; q.push(s),vis[s]=1,dep[s]=0;
while(sz(q)){
int u=q.front(); q.pop(),vis[u]=0;
for(int&v:e[u])if(fw[v]&&dep[to[v]]>dep[u]+co[v]){
dep[to[v]]=dep[u]+co[v],p[to[v]]=v;
if(!vis[to[v]]) vis[to[v]]=1,q.push(to[v]);
}
}
return dep[t]<inf;
}
int flow,cost;
void EK(){
while(Bfs()){
int f=inf;
for(int i=t;i!=s;i=to[p[i]^1]) f=min(f,fw[p[i]]);
flow+=f,cost+=dep[t]*f;
for(int i=t;i!=s;i=to[p[i]^1]) fw[p[i]]-=f,fw[p[i]^1]+=f;
fc.pb(mp(flow,cost));
}
}
//Main
int main(){
scanf("%d%d",&n,&m);
for(int i=1,u,v,w;i<=m;i++)
scanf("%d%d%d",&u,&v,&w),add(u,v,1,w);
s=1,t=fn=n,EK();
scanf("%d",&q);
for(int i=1,x;i<=q;i++){
scanf("%d",&x);
db res=inf;
for(auto d:fc) res=min(res,db(d.y+x)/d.x);
printf("%.10lf\n",res);
}
return 0;
}
祝大家学习愉快!
题解-CF1307G Cow and Exercise的更多相关文章
- 【题解】Cow Relays
题目大意 求在一张有\(m\)条边无向连通图中,点\(s\)到点\(t\)的经过\(k\)条边的最短路(\(1 \leq m \leq 100\),\(1 \leq k \leq 10^6\)). ...
- 【codeforces - 1307G】Cow and Exercise
目录 description solution accepted code details description 给定 n 点 m 边简单有向图,有边权. q 次询问,每次给出 xi.可以增加某些边 ...
- 树&图 记录
A - Lake Counting POJ - 2386 最最最最最基础的dfs 挂这道题为了提高AC率(糖水不等式 B - Paint it really, really dark gray Cod ...
- 「题解」:毛一琛/$cow$ $subsets$
问题 A: 毛一琛/$cow$ $subsets$ 时间限制: 1 Sec 内存限制: 512 MB 题面 题面谢绝公开. 题解 题名貌似是个大神??看起来像是签到题然后就死了. 首先$O(3^n) ...
- 题解【洛谷P2853】[USACO06DEC]牛的野餐Cow Picnic
题目描述 The cows are having a picnic! Each of Farmer John's \(K (1 ≤ K ≤ 100)\) cows is grazing in one ...
- POJ 3263 Tallest Cow 题解
题目 FJ's \(N (1 ≤ N ≤ 10,000)\) cows conveniently indexed 1..N are standing in a line. Each cow has a ...
- USACO07NOV Cow Relays G 题解
题目 For their physical fitness program, \(N (2 ≤ N ≤ 1,000,000)\) cows have decided to run a relay ra ...
- Hdoj 2717.Catch That Cow 题解
Problem Description Farmer John has been informed of the location of a fugitive cow and wants to cat ...
- BZOJ1604 & 洛谷2906:[USACO2008 OPEN]Cow Neighborhoods 奶牛的邻居——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1604 https://www.luogu.org/problemnew/show/P2906#sub ...
随机推荐
- 《GNU_makefile》——第八章 内嵌函数
函数可以带参数,函数的展开方式和变量展开一样,函数的返回结果替换调用函数的文本. 1.函数的调用 $(FUNCTION ARGUMENTS) 或者: ${FUNCTION ARGUMENTS} FUN ...
- 我要进大厂之大数据ZooKeeper知识点(2)
01 我们一起学大数据 接下来是大数据ZooKeeper的比较偏架构的部分,会有一点难度,老刘也花了好长时间理解和背下来,希望对想学大数据的同学有帮助,也特别希望能够得到大佬的批评和指点. 02 知识 ...
- [web安全原理分析]-文件上传漏洞基础
简介 前端JS过滤绕过 待更新... 文件名过滤绕过 待更新 Content-type过滤绕过 Content-Type用于定义网络文件的类型和网页编码,用来告诉文件接收方以什么形式.什么编码读取这个 ...
- 关于Java集合框架,这篇讲的还算不错了,建议大家看看!
集合框架 为什么要用集合而非数组: 虽然数组是保存一组对象最有效的方式,但是数组具有固定尺寸,但在写程序时并不知道将需要多少个对象.而集合能够自动地调整自己的尺寸. 打印数组时,必须使用Arrays. ...
- 了解 MySQL的数据行、行溢出机制吗?
目录 一.行 有哪些格式? 二.紧凑的行格式长啥样? 三.MySQL单行能存多大体量的数据? 四.Compact格式是如何做到紧凑的? 五.什么是行溢出? 六.行 如何溢出? 七.思考一个问题 关注送 ...
- ABBYY FineReader中的其他格式
ABBYY FineReade是一款功能强大的PDF编辑转换器,在内置任务窗口,您可以将 PDF 或图片转换成常见的格式(*.pptx. *.odt. *.html.*.epub.*.fb2.*.rt ...
- MindManager 2021 版新增了哪些功能
MindManager Windows 21是一款强大的可视化工具和思维导图软件,在工作应用中有出色的表现.今天就带大家来看下这个新版本增加了哪些功能? 1.新增现代主题信息样式MindManager ...
- 两款超好用的Mac读写ntfs软件推荐给大家
活中我们免不了会使用一些硬盘设备来存储文件或者是数据,然而绝大多数的移动硬盘都是ntfs格式.Mac读写ntfs软件有很多,究竟哪一款适合我们? 首先,我们一起了解一下什么是ntfs格式.ntfs,是 ...
- Mac读写ntfs软件究竟哪一款适合我们?
生活中我们免不了会使用一些硬盘设备来存储文件或者是数据,然而绝大多数的移动硬盘都是ntfs格式.Mac读写ntfs软件有很多,究竟哪一款适合我们? 首先,我们一起了解一下什么是ntfs格式.ntfs, ...
- 分析 5种分布式事务方案,还是选了阿里的 Seata(原理 + 实战)
好长时间没发文了,最近着实是有点忙,当爹的第 43 天,身心疲惫.这又赶上年底,公司冲 KPI 强制技术部加班到十点,晚上孩子隔两三个小时一醒,基本没睡囫囵觉的机会,天天处于迷糊的状态,孩子还时不时起 ...