用不动点组合子解递归(python实现)
不动点组合子
Y = λf. (λx. f (x x)) (λx. f (x x))
θ = (λx. λy. (y(x x y))) (λx.λy.(y(x x y)))
Y f = f (Y f)
θ f = f (θ f)
设
h1 =λx.f(x x)
h2 =λx.λy.(y(x x y))
简化为:
Y = λf. h1(h1)
θ = h2(h2) 递归求解
ƒ(n) = n*ƒ(n-1)
ƒ(0) = 1
简记为: ƒ = λn.n׃(n-1) #ƒ对应代码中的 factorial
用归纳法可证ƒ唯一,
设 g = λƒ.λn.n׃(n-1) #g对应代码中的_factorial
则g ƒ = λn.n׃(n-1) = ƒ
因为g(Y g)=(Y g)
所以Y g为ƒ的唯一解
即ƒ(n)=(Y g)(n)=(Θ g)(n)
def _factorial(f):
def factorial(n):
if not n:
return 1
else:
return n * f(n - 1)
return factorial def Y(f):
def h(x):
return f(lambda v: x(x)(v))
return h(h) def O(f):
def h(x):
return (lambda y: y(lambda v: x(x)(y)(v)))
return h(h)(f) #Y(_factorial)(5)
#O(_factorial)(5) #Y = lambda f: (lambda x:f(lambda v:x(x)(v)))(lambda x:f(lambda v:x(x)(v)))
#YY = lambda f: ((lambda x: x(x))(lambda y: f(lambda v: y(y)(v))))
参考:
http://www.cnblogs.com/ldp615/archive/2013/04/09/recursive-lambda-expressions-1.html
http://www.cnblogs.com/ldp615/archive/2013/04/09/recursive-lambda-expressions-2.html
http://www.cnblogs.com/ldp615/archive/2013/04/10/recursive-lambda-expressions-3.html
http://www.cnblogs.com/ldp615/archive/2013/04/10/recursive-lambda-expressions-4.html
http://www.cnblogs.com/ldp615/archive/2013/04/11/recursive-lambda-expressions-5.html
http://www.pythontip.com/blog/post/12174/
用不动点组合子解递归(python实现)的更多相关文章
- Lambda演算 - 简述Y组合子的作用
Y组合子:\f.(\x.f(xx))(\x.f(xx)),接受一个函数,返回一个高阶函数 Y组合子用于生成匿名递归函数. 什么叫匿名递归函数,考虑以下C语言递归函数 int sum(int n) { ...
- 简单易懂的程序语言入门小册子(4):基于文本替换的解释器,递归,如何构造递归函数,Y组合子
递归.哦,递归. 递归在计算机科学中的重要性不言而喻. 递归就像女人,即令人烦恼,又无法抛弃. 先上个例子,这个例子里的函数double输入一个非负整数$n$,输出$2n$. \[ {double} ...
- 大到可以小说的Y组合子(二)
问:上一回,你在最后曾提到"抽象性不足",这话怎么说? 答:试想,如果现在需要实现一个其它的递归(比如:Fibonacci),就必须把之前的模式从头套一遍,然后通过fib_make ...
- Y组合子
Y组合子 Y组合子的用处 作者:王霄池链接:https://www.zhihu.com/question/21099081/answer/18830200来源:知乎著作权归作者所有.商业转载请联系作者 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- 大到可以小说的Y组合子(三)
答:关于Fix的问题你fix了吗? 问:慢着,让我想想,上次留下个什么问题来着?是说我们有了一个求不动点的函数Fix,但Fix却是显式递归的,是吧? 答:有劳你还记的这个问题. 问:Fix的参与背离了 ...
- 面向组合子设计Coder
面向组合子 面向组合子(Combanitor-Oriented),是最近帮我打开新世界大门的一种pattern.缘起haskell,又见monad与ParseC,终于ajoo前辈的几篇文章. 自去年9 ...
- 大到可以小说的Y组合子(一)
问:上回乱扯淡了一通,这回该讲正题了吧. 答:OK. 先来列举一些我参考过,并从中受到启发的文章. (1.)老赵的一篇文章:使用Lambda表达式编写递归函数 (2.)装配脑袋的两篇文章:VS2008 ...
- 大到可以小说的Y组合子(零)
问:啊!我想要一个匿名的递归… 答:Y(音同Why)… … … 问:作为一位命令式语言的使用者,为什么会突然折腾起Y组合子呢? 答:的确,这事儿要从很久以前的几次搁浅开始说起…上学的时候,从来没有接触 ...
随机推荐
- beforefieldinit释义
首先让我们认识什么是,当字段被标记为beforefieldinit类型时,该字段初始化可以发生在任何时候任何字段被引用之前.这句话听起了有点别扭,接下来让我们通过具体的例子介绍. /// <su ...
- 用OpenCV实现Otsu算法
算法的介绍 otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找 ...
- strcat()的编写
1.strcat() #include <windows.h> #include <assert.h> #include <iostream> //strcat() ...
- Mvc Webapi+Fiddler调试 (WebAPI 一)
Fiddler Fiddler是一个http协议调试代理工具,它能够记录并检查所有你的电脑和互联网之间的http通讯,设置断点,查看所有的“进出”Fiddler的数据(指cookie,html,js, ...
- 解决chrome下上传文件 返回值带 <pre style="word-wrap:break-word;white-space:prewrap;"></pre>
解决办法:后台 response.setContentType("text/html");
- Android 混淆文件project.properties和proguard-project.txt
参考文档:http://blog.csdn.net/xueyepiaoling/article/details/8202359 http://glblong.blog.51cto.com/305861 ...
- 初学swift笔记变量的定义(一)
swift变量的定义 1 import Foundation /* 变量的定义 变量的类型是可以不用写的 var a=10 常量的定义 let修饰 */ print(a) let b= print(b ...
- VS2015中使用Git
10分钟学会在VS2015中使用Git 写程序必然需要版本控制,哪怕是个人项目也是必须的.我们在开发UWP APP的时候,VS2015默认提供了对微软TFS和Git的支持.考虑到现在Git很火,作为微 ...
- Python urllib和urllib2模块学习(一)
(参考资料:现代魔法学院 http://www.nowamagic.net/academy/detail/1302803) Python标准库中有许多实用的工具类,但是在具体使用时,标准库文档上对使用 ...
- Developer‘s提升开发效率的工具和插件或编程语言
1.Git 之前也有过不少版本控制的工具.有好的,也有糟糕的.不过它们都或多或少地误入歧途了. 这时候Git出现了.一旦你用上了这个神奇的工具,很难相像你还会碰到比它更好的了. 还没用过Git?试一下 ...