(Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangle numbers are:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
By converting each letter in a word to a number corresponding to its alphabetical position and adding these values we form a word value. For example, the word value for SKY is 19 + 11 + 25 = 55 = t10. If the word value is a triangle number then we shall call the word a triangle word.
Using words.txt (right click and 'Save Link/Target As...'), a 16K text file containing nearly two-thousand common English words, how many are triangle words?
题目大意:
三角形数序列中第 n 项的定义是: tn = ½n(n+1); 因此前十个三角形数是:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
通过将一个单词中每个字母在字母表中的位置值加起来,我们可以将一个单词转换为一个数。例如,单词SKY的值为19 + 11 + 25 = 55 = t10。如果单词的值是一个三角形数,我们称这个单词为三角形单词。
words.txt (右键另存为)是一个16K的文本文件,包含将近两千个常用英语单词。在这个文件中,一共有多少个三角形词?
//(Problem 42)Coded triangle numbers
// Completed on Tue, 19 Nov 2013, 03:34
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h> bool test(int n)
{
int m;
m = (int)sqrt(n * );
if(m * (m + ) == * n) return true;
else return false;
} int count(char * s)
{
int i = ;
int sum = ;
while(s[i] != '\0') {
sum += s[i] - 'A' + ;
i++;
}
return sum;
} void solve(void)
{
FILE *fp;
int i, j, k;
char *s, c;
int sum = ;
char a[]; fp = fopen("words.txt", "r");
fseek(fp, , SEEK_END);
int file_size;
file_size = ftell(fp);
fseek(fp, , SEEK_SET);
s = (char*)malloc(file_size * sizeof(char));
fread(s, sizeof(char), file_size, fp); i = j = k = ;
while(i <= file_size) {
c = s[i++];
if(!isalpha(c)) {
if(c == ',') {
j = ;
if(test(count(a))) sum++;
memset(a,'\0', * sizeof(char));
}
} else {
a[j++] = c;
}
}
if(test(count(a))) sum++;
memset(a,'\0', * sizeof(char)); printf("%d\n",sum);
} int main(void)
{
solve();
return ;
}
|
Answer:
|
162 |
(Problem 42)Coded triangle numbers的更多相关文章
- (Problem 2)Even Fibonacci numbers
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting w ...
- (Problem 21)Amicable numbers
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 49)Prime permutations
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...
- (Problem 47)Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 7 15 = 3 5 The fi ...
- (Problem 36)Double-base palindromes
The decimal number, 585 = 10010010012(binary), is palindromic in both bases. Find the sum of all num ...
- (Problem 34)Digit factorials
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are ...
- (Problem 29)Distinct powers
Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...
随机推荐
- css中的media
说起CSS3的新特性,就不得不提到 Media Queries .最近 Max Design 更新的一个泛读列表里,赫然就有关于 Media Queries 的文章.同时位列其中的也有前天我刚刚翻译的 ...
- WPF之Binding的三种简单写法
环境 类代码 public class Person:INotifyPropertyChanged { private string name; public string Name { get { ...
- JavaSE复习日记 : 继承关系和super关键字以及继承关系中方法的覆写
/* * 类的继承和super关键字 * * 软件开发的三大目的: * 可拓展性; * 可维护性; * 可重用性; * * 这里单说下可重用性这一项: * 为了代码复用,复用方式有: * 函数的调用复 ...
- font awesome使用笔记
背景 今天将BS项目部署到IIS服务器上时.首次打开一个使用font awesome图标集的页面是加载非常慢. 于是果断按下F12查看具体页面的请求时常.除去其他异步数据的加载消耗时间以外.我居然看到 ...
- Tic-Tac-Toe游戏
#Tic-Tac-Toe #机器人和人类下井字棋 #全局变量 import random X = "X" O = "O" EMPTY = " &quo ...
- Mybatis入门 digest
http://www.mybatis.org/mybatis-3/zh/configuration.html userDao-mapping.xml相当于是UserDao的实现, 同时也将User实体 ...
- CCNA实验(5) -- OSPF
enableconf tno ip do loenable pass ciscoline con 0logg syncexec-t 0 0line vty 0 4pass ciscologg sync ...
- .net mvc System.Web.Optimization 、System.Data.Entity.Infrastructure找不到
在MVC4的开发中,如果在App_Start目录下BundleConfig.cs类没有找不到引用System.Web.Optimization,可以使用程序包管理控制台进行安装到使用的项目 打开 工具 ...
- ASP.NET Web编程
runat="server"直接回交服务器,处理数据,又以数据加密后的hidden属性的input控件插入回去,实现表单的状态保存 ruant="server" ...
- OpenCV 开发环境环境搭建(win10+vs2015+opencv 3.0)
OpenCV 3.0 for windows(下载地址:http://opencv.org/): 本测试中,OpenCV安装目录:D:\Program Files\opencv,笔者操作系统为64位. ...