The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangle numbers are:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

By converting each letter in a word to a number corresponding to its alphabetical position and adding these values we form a word value. For example, the word value for SKY is 19 + 11 + 25 = 55 = t10. If the word value is a triangle number then we shall call the word a triangle word.

Using words.txt (right click and 'Save Link/Target As...'), a 16K text file containing nearly two-thousand common English words, how many are triangle words?

题目大意:

三角形数序列中第 n 项的定义是: tn = ½n(n+1); 因此前十个三角形数是:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

通过将一个单词中每个字母在字母表中的位置值加起来,我们可以将一个单词转换为一个数。例如,单词SKY的值为19 + 11 + 25 = 55 = t10。如果单词的值是一个三角形数,我们称这个单词为三角形单词。

words.txt (右键另存为)是一个16K的文本文件,包含将近两千个常用英语单词。在这个文件中,一共有多少个三角形词?

//(Problem 42)Coded triangle numbers
// Completed on Tue, 19 Nov 2013, 03:34
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h> bool test(int n)
{
int m;
m = (int)sqrt(n * );
if(m * (m + ) == * n) return true;
else return false;
} int count(char * s)
{
int i = ;
int sum = ;
while(s[i] != '\0') {
sum += s[i] - 'A' + ;
i++;
}
return sum;
} void solve(void)
{
FILE *fp;
int i, j, k;
char *s, c;
int sum = ;
char a[]; fp = fopen("words.txt", "r");
fseek(fp, , SEEK_END);
int file_size;
file_size = ftell(fp);
fseek(fp, , SEEK_SET);
s = (char*)malloc(file_size * sizeof(char));
fread(s, sizeof(char), file_size, fp); i = j = k = ;
while(i <= file_size) {
c = s[i++];
if(!isalpha(c)) {
if(c == ',') {
j = ;
if(test(count(a))) sum++;
memset(a,'\0', * sizeof(char));
}
} else {
a[j++] = c;
}
}
if(test(count(a))) sum++;
memset(a,'\0', * sizeof(char)); printf("%d\n",sum);
} int main(void)
{
solve();
return ;
}
Answer:
162

(Problem 42)Coded triangle numbers的更多相关文章

  1. (Problem 2)Even Fibonacci numbers

    Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting w ...

  2. (Problem 21)Amicable numbers

    Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into ...

  3. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  4. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  5. (Problem 49)Prime permutations

    The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual ...

  6. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  7. (Problem 36)Double-base palindromes

    The decimal number, 585 = 10010010012(binary), is palindromic in both bases. Find the sum of all num ...

  8. (Problem 34)Digit factorials

    145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are ...

  9. (Problem 29)Distinct powers

    Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, ...

随机推荐

  1. css中的media

    说起CSS3的新特性,就不得不提到 Media Queries .最近 Max Design 更新的一个泛读列表里,赫然就有关于 Media Queries 的文章.同时位列其中的也有前天我刚刚翻译的 ...

  2. WPF之Binding的三种简单写法

    环境 类代码 public class Person:INotifyPropertyChanged { private string name; public string Name { get { ...

  3. JavaSE复习日记 : 继承关系和super关键字以及继承关系中方法的覆写

    /* * 类的继承和super关键字 * * 软件开发的三大目的: * 可拓展性; * 可维护性; * 可重用性; * * 这里单说下可重用性这一项: * 为了代码复用,复用方式有: * 函数的调用复 ...

  4. font awesome使用笔记

    背景 今天将BS项目部署到IIS服务器上时.首次打开一个使用font awesome图标集的页面是加载非常慢. 于是果断按下F12查看具体页面的请求时常.除去其他异步数据的加载消耗时间以外.我居然看到 ...

  5. Tic-Tac-Toe游戏

    #Tic-Tac-Toe #机器人和人类下井字棋 #全局变量 import random X = "X" O = "O" EMPTY = " &quo ...

  6. Mybatis入门 digest

    http://www.mybatis.org/mybatis-3/zh/configuration.html userDao-mapping.xml相当于是UserDao的实现, 同时也将User实体 ...

  7. CCNA实验(5) -- OSPF

    enableconf tno ip do loenable pass ciscoline con 0logg syncexec-t 0 0line vty 0 4pass ciscologg sync ...

  8. .net mvc System.Web.Optimization 、System.Data.Entity.Infrastructure找不到

    在MVC4的开发中,如果在App_Start目录下BundleConfig.cs类没有找不到引用System.Web.Optimization,可以使用程序包管理控制台进行安装到使用的项目 打开 工具 ...

  9. ASP.NET Web编程

    runat="server"直接回交服务器,处理数据,又以数据加密后的hidden属性的input控件插入回去,实现表单的状态保存 ruant="server" ...

  10. OpenCV 开发环境环境搭建(win10+vs2015+opencv 3.0)

    OpenCV 3.0 for windows(下载地址:http://opencv.org/): 本测试中,OpenCV安装目录:D:\Program Files\opencv,笔者操作系统为64位. ...