dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正确粉刷的格子数 , 状态的转移很显然 , w[ i ][ j ] 表示 第 i 行使用 j 次粉刷机会能正确粉刷的格子数.

接下来考虑 w , 对于每一行 : DP[ i ][ j ] = max( DP[ k ][ j - 1 ] + sum( k + 1 , i ) ) ( 0 <= k < i ) sum( l , r ) 表示从区间[ l , r ] 的颜色相同的格子的个数的较大值( 因为两种颜色 ) , 那么 w[ i ][ j ] = 对第 i 行做的 DP[ m ][ j ] .

---------------------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<iostream>
 
#define rep( i , n ) for( int i = 0 ;  i < n ; ++i )
#define clr( x , c ) memset( x , c , sizeof( x ) )
#define Rep( i , n ) for( int i = 1 ; i <= n ; ++i )
 
using namespace std;
 
const int maxn = 50 + 5;
const int maxt = 2500 + 5;
 
int sum[ maxn ][ maxn ];
int n , m , T;
int w[ maxn ][ maxt ];
int D[ maxn ][ maxt ];
int d[ maxn ][ maxt ];
 
int cur;
 
int Dp( int x , int k ) {
int &ans = D[ x ][ k ];
if( ans != -1 )
   return ans;
   
ans = 0;
rep( i , x ) {
int t = sum[ cur ][ x ] - sum[ cur ][ i ];
   ans = max( ans , Dp( i , k - 1 ) + max( t , x - i - t ) );
   
}
return ans;
}
 
void init() {
clr( w , 0 );
Rep( i , n ) {
clr( D , -1 );
rep( j , T + 1 ) 
   D[ 0 ][ j ] = 0;
Rep( j , m ) 
   D[ j ][ 0 ] = 0;
   Rep( j , T )
   w[ cur = i ][ j ] = Dp( m , j );
}
}
int dp( int x , int k ) {
int &ans = d[ x ][ k ];
if( ans != -1 ) 
   return ans;
ans = 0;
for( int i = 0 ; i <= k ; i++ )
   ans = max( ans , dp( x - 1 , k - i ) + w[ x ][ i ] );
return ans;
}
 
int main() {
freopen( "test.in" , "r" , stdin );
cin >> n >> m >> T;
Rep( i , n ) {
sum[ i ][ 0 ] = 0;
   Rep( j , m ) {
   
    char c = getchar();
   
    while( ! isdigit( c ) ) c = getchar();
   
    sum[ i ][ j ] += sum[ i ][ j - 1 ] + c - '0';
   
   }
   
}
init();
clr( d , -1 );
memcpy( d[ 0 ] , w[ 0 ] , sizeof d[ 0 ] );
cout << dp( n , T ) << "\n";
return 0;
}

---------------------------------------------------------------------------------------------

1296: [SCOI2009]粉刷匠

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1056  Solved: 620
[Submit][Status][Discuss]

Description

windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

Input

输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,'0'表示红色,'1'表示蓝色。

Output

输出文件paint.out包含一个整数,最多能正确粉刷的格子数。

Sample Input

3 6 3
111111
000000
001100

Sample Output

16

HINT

30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。
100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。

Source

BZOJ 1296: [SCOI2009]粉刷匠( dp )的更多相关文章

  1. BZOJ 1296: [SCOI2009]粉刷匠 分组DP

    1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...

  2. bzoj 1296: [SCOI2009]粉刷匠【dp+背包dp】

    参考:http://hzwer.com/3099.html 神题神题 其实只要知道思路就有点都不难-- 先对每一行dp,设g[i][j]为这行前i个格子粉刷了k次最大粉刷正确数,随便n^3一下就行 设 ...

  3. bzoj 1296: [SCOI2009]粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  4. bzoj 1296: [SCOI2009]粉刷匠 动态规划

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  5. 1296: [SCOI2009]粉刷匠[多重dp]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1919  Solved: 1099[Submit][Statu ...

  6. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  7. Luogu P4158 [SCOI2009]粉刷匠(dp+背包)

    P4158 [SCOI2009]粉刷匠 题意 题目描述 \(windy\)有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能 ...

  8. BZOJ1296: [SCOI2009]粉刷匠 DP

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  9. 1296: [SCOI2009]粉刷匠

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

随机推荐

  1. Apriori算法

    APRIORI Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集.而且算法已经被广泛的应用到商业.网络安全等各个领域. Apri ...

  2. centos6.5vpn搭建

    centos6.5vpn搭建整个搭建流程,服务端,客户端安装及测试. 达到的效果: 在安装vpn客户端的机器可通过vpn(virtual private network)专用线路(vpn主配置文件中定 ...

  3. Swift学习之十四:闭包(Closures)

    * 闭包(Closures) * 闭包是自包含的功能代码块,可以在代码中使用或者用来作为参数传值. * 在Swift中的闭包与C.OC中的blocks和其它编程语言(如Python)中的lambdas ...

  4. Ubuntu下用glade和GTK+开发C语言界面程序(三)——学习make的使用方法

    makefile的规则 makefile的规则例如以下: target ... : prerequisites ... command ... ... target能够是一个object file(目 ...

  5. Sicily 4495. Print permutations

    http://soj.me/4495 按字典序生成字符串的全排列 直接递归: #include <iostream> #include <string> #include &l ...

  6. EF 4.0 更新数据时候的一个错误及其处理

    错误如图: 修改下方法后可以进行更新了.但是中间多了一步查询 /// <summary> /// 更新一个产品分类 /// </summary> /// <param n ...

  7. ItextSharp代码示例

    示例代码目录 示例代码0101. 5 示例代码0102. 7 示例代码0103. 9 示例代码0104. 11 示例代码0105. 13 示例代码0106. 15 示例代码0107. 17 示例代码0 ...

  8. c_str()

    1.string类成员函数c_str()的原型: const char *c_str()const;//返回一个以null终止的c字符串 2.c_str()函数返回一个指向正规c字符串的指针,内容和s ...

  9. PPT插件 用js制作PPT

    https://github.com/bartaz/impress.js/ deck.js

  10. js 中的闭包

    /** *闭包就是在一个函数的外面访问函数内部的变量 **/ var name = "xiao A"; var obj = { name : "xiao B" ...