Problem Description
One day, Flyvan introduced a new game to his two friends, Oregon Maple and Grape Skin. The game is quite simple. Given an N-sized grids, like the figure A shown below (as N = 4). The blue points are the places the first player can choose, and the red points are the places the second player can choose.

In the game, the two players take turns to choose two points to get connected by a stick. The two chosen points’ distance should be exactly one-unit length. The first player’s goal is to create a ‘bridge’ that connects a most left point and a most right point. The second player’s goal is to create a ‘bridge’ that connects a most top point and a most bottom point. Figure B shows a possible result (the first player won). In addition, the stick shouldn’t get crossed.

Now Flyvan will give the number N, and his two friends will play the game. Both of the two players will choose the best strategy. You can bet on one player, and if he wins the game, you’ll get twice money you bet~

Since you are a talented programmer, you surely won’t just do gambling. Please write a program to find out the player who you should bet on. As Oregon Maple is elder, he will always play first.

 
Input
Each line of the input is an integer N (2 <= N <= 270000), which indicated the number Flyvan chose. The end-of-file is denoted by a single line containing the number -1.

 
Output
If you think the first player will win, please output “I bet on Oregon Maple~”, else please output “I bet on Grape Skin~”.

 
Sample Input
2
-1
 
Sample Output
I bet on Oregon Maple~

第一个人从左到右连接蓝点

第二个人从上到下连接红点

轮流进行

看最后谁的线最多则赢

我们可以发现,只要是先手,那么连的线一定是最多了,因此代码也就只有短短的几行

#include <stdio.h>
int main()
{
int n;
while(scanf("%d",&n),n+1)
puts("I bet on Oregon Maple~");
return 0;
}

HDU3863:No Gambling的更多相关文章

  1. java web 开发三剑客 -------电子书

    Internet,人们通常称为因特网,是当今世界上覆盖面最大和应用最广泛的网络.根据英语构词法,Internet是Inter + net,Inter-作为前缀在英语中表示“在一起,交互”,由此可知In ...

  2. 所有selenium相关的库

    通过爬虫 获取 官方文档库 如果想获取 相应的库 修改对应配置即可 代码如下 from urllib.parse import urljoin import requests from lxml im ...

  3. CodeForces - 662A:Gambling Nim (求有多少个子集其异或为S)(占位)

    As you know, the game of "Nim" is played with n piles of stones, where the i-th pile initi ...

  4. 【BZOJ5197】Gambling Guide (最短路,期望)

    [BZOJ5197]Gambling Guide (最短路,期望) 题面 BZOJ权限题 洛谷 题解 假设我们求出了每个点的期望,那么对于一个点,只有向期望更小的点移动的时候才会更新答案. 即转移是: ...

  5. 每日英语:How Often Do Gamblers Really Win?

    The casino billboards lining America's roadways tantalize with the lure of riches. 'Easy Street. It' ...

  6. 【CF662A】Gambling Nim 线性基

    [CF662A]Gambling Nim 题意:n长卡牌,第i张卡牌正面的数字是$a_i$,反面的数字是$b_i$,每张卡牌等概率为正面朝上或反面朝上.现在Alice和Bob要用每张卡牌朝上的数字玩N ...

  7. zoj 3356 Football Gambling II【枚举+精度问题】

    题目: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3356 http://acm.hust.edu.cn/vjudge/ ...

  8. iOS审核策略重磅更新:Guideline 2.1批量拒审

    自从进入了2018年,大量应用在AppStore提交审核后,都直接给大家回复了个新春大礼包 Guideline 2.1 - Information Needed. 而大部分的应用,特别是金融类相关AP ...

  9. [BZOJ5197] [CERC2017]Gambling Guide

    [BZOJ5197] [CERC2017]Gambling Guide 题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=5197 Solut ...

随机推荐

  1. 面向对象程序设计-C++_课时22向上造型

    赋值兼容规则是指在公有派生情况下,一个派生类的对象可以作为基类的对象来使用的情况. 约定类derived是从类base公有派生而来的,则指如下3种情况: (1)派生的对象可以赋给基类的对象.例如: d ...

  2. Largest Submatrix(动态规划)

    Largest Submatrix Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. [vc]如何对radio按钮分组

    如何使用多组? 多组和一组是一样的使用,只要搞清楚哪个是哪一组的就行了.再为对话框添加Radio3和Radio4.很简单,先为这些RadioButton排个顺序,就是排列他们的TABORDER.在对话 ...

  4. no data type for node

    java.lang.IllegalStateException: No data type for node: org.hibernate.hql.ast.tree.IdentNode  \-[IDE ...

  5. FSM(有限状态机)

    游戏引擎是有限状态机最为成功的应用领域之一,由于设计良好的状态机能够被用来取代部分的人工智能算法,因此游戏中的每个角色或者器件都有可能内嵌一个状态机.考虑RPG游戏中城门这样一个简单对象,它具有打开( ...

  6. HDU-Billboard-2795(线段树)

    hdu2795 Billboard Time Limit: 20000/8000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  7. poj3308

    二分图的最小点权覆盖,选定点集,与该点集有关的边覆盖所有顶点,且该点集的点权值和最小. 有类似于匈牙利算法一样的带权匹配算法,但是这里就不介绍了.个人比较推荐,用最大流算法更好理解,写起来更容易. 题 ...

  8. Android webViewj简单处理apk的下载链接

    最近在开发二维码扫一扫的功能,需要分多种情况处理外部的url.遇到一个问题是,一些程序包(比如一些android应用)的下载不好处理.如果不做任何处理的话,webView会打开一个空白页.比如这个链接 ...

  9. R与数据分析旧笔记(⑨)广义线性回归模型

    广义线性回归模型 广义线性回归模型 例题1 R.Norell实验 为研究高压电线对牲畜的影响,R.Norell研究小的电流对农场动物的影响.他在实验中,选择了7头,6种电击强度, 0,1,2,3,4, ...

  10. JQ兼容性问题

    checkbox操作 1:设置为选中状态   $(this).prop("checked", true); 2:判断是否选中     $(this).is(":check ...