题意:求图中的连通块数,注意孤立的算自连通!

例如:6个顶点3条路径,其中路径为:1->2    4->5  1->3

那么有(1-2&&1->3) + (4->5) + (6) 共3个连通块!

解法:对每个节点宽搜!

 #include<iostream>
#include<memory.h>
#include<queue> using namespace std; bool roads[][];
bool visited[];
int N,M; int main(){ cin >>N >>M;
memset(roads,,sizeof(roads));
memset(visited,false,sizeof(visited));
int from,dest;
for(int i=; i<=M; i++){
cin >> from >> dest;
roads[from][dest] = true;
roads[dest][from] = true;
} queue<int> check;
int num = ;
int cnt = ;
int i;
//breadth-frist search
while(num != N){
for( i=; i<=N;i++){
if(visited[i]== false){
check.push(i);
visited[i]= true;
num++;
cnt++;
break;
}
}
while(!check.empty()){
i = check.front();
for(int j = ; j<=N;j++){
if(roads[i][j] == true && visited[j] == false){
check.push(j);
visited[j] = true;
num++;
}
}
// erase the front node
check.pop();
}
}
cout << cnt <<endl;
return ;
}

sicily 4378 connected components in undirected graph的更多相关文章

  1. Connected Component in Undirected Graph

    Description Find connected component in undirected graph. Each node in the graph contains a label an ...

  2. Sicily connect components in undirected graph

    题目介绍: 输入一个简单无向图,求出图中连通块的数目. Input 输入的第一行包含两个整数n和m,n是图的顶点数,m是边数.1<=n<=1000,0<=m<=10000. 以 ...

  3. [SOJ] connect components in undirected graph

    题目描述: 输入一个简单无向图,求出图中连通块的数目 输入: 输入的第一行包含两个整数n和m,n是图的顶点数,m是边数.1<=n<=1000,0<=m<=10000. 以下m行 ...

  4. Educational Codeforces Round 37 E. Connected Components?(图论)

    E. Connected Components? time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  5. Codeforces 920 E Connected Components?

    Discription You are given an undirected graph consisting of n vertices and  edges. Instead of giving ...

  6. Educational Codeforces Round 37 (Rated for Div. 2) E. Connected Components? 图论

    E. Connected Components? You are given an undirected graph consisting of n vertices and edges. Inste ...

  7. CodeForces242D:Connected Components (不错的并查集)

    We already know of the large corporation where Polycarpus works as a system administrator. The compu ...

  8. D. Connected Components Croc Champ 2013 - Round 1 (并查集+技巧)

    292D - Connected Components D. Connected Components time limit per test 2 seconds memory limit per t ...

  9. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

随机推荐

  1. Easyui弹出窗体在iframe的父级页面显示

    今天做EasyUI学习的预到了一个这样的问题:通过iframe加载的一个页面在调用$.messager.alert();这个方法后只能在iframe中显示alert效果而不是在全局的页面上显示这并不我 ...

  2. git查看某个文件的修改历史

    <转自 http://www.cnblogs.com/flyme/archive/2011/11/28/2265899.html> 有时候在比对代码时,看到某些改动,但不清楚这个改动的作者 ...

  3. Python基础类型

    1. 列表.元组操作 列表是我们最以后最常用的数据类型之一,通过列表可以对数据实现最方便的存储.修改等操作 定义列表 names = ['Alex',"Tenglan",'Eric ...

  4. iis7 发布mvc 遇到的HTTP错误 403.14-Forbidden Web 服务器被配置为不列出此目录的内容

    iis 7上发布mvc报错:403.14-Forbidden Web 服务器被配置为不列出此目录的内容 提示里面的解决方法是: 如果不希望启用目录浏览,请确保配置了默认文档并且该文件存在. 使用 II ...

  5. MVC接收以post形式传输的各种参数

    近日研究用wcf框架接收同事Android端以post形式传输的各种类型的参数,来做处理.但研究过程中问题比较多,首先键值对的形式是实现了,传输int,string类型都不成问题,但是到传输文件的时候 ...

  6. Ecstore内置表单验证?

       

  7. linux下查看所有用户及所有用户组

    groups 查看当前登录用户的组内成员groups gliethttp 查看gliethttp用户所在的组,以及组内成员whoami 查看当前登录用户名 /etc/group文件包含所有组/etc/ ...

  8. Linux && vim 批量替换

    Linux批量文件的字符串替换 sed -i "s/oldstring/newstring/g" `grep oldstring -rl path` vim多行替换::1,2s/s ...

  9. oralce中exists not exists in not in对于NULL的处理

    1.   先讨论 in 与 not in中存在NULL的情况, sql语句如下: 1 select 1 result1 from dual where 1 not in (2, 3); 2 3 4 s ...

  10. 批处理备份和恢复mysql数据库

    备份 set "Ymd=%date:~,4%%date:~5,2%%date:~8,2%%time:~0,2%%time:~3,2%%time:~6,2%" md "D: ...