Solution 1

Naive way

First, sort the array using Arrays.sort in Java. Than, scan once to find the majority element. Time complexity O(nlog(n))

 public class Solution {
public int majorityElement(int[] nums) {
int length = nums.length;
if (length == 1)
return nums[0];
Arrays.sort(nums);
int prev = nums[0];
int count = 1;
for (int i = 1; i < length; i++) {
if (nums[i] == prev) {
count++;
if (count > length / 2) return nums[i];
} else {
prev = nums[i];
count = 1;
}
}
return 0;
}
}

Solution 2

Since the majority always take more than a half space, the middle element is guaranteed to be the majority.

 public class Solution {
public int majorityElement(int[] nums) {
int length = nums.length;
if (length == 1)
return nums[0];
Arrays.sort(nums);
return nums[length / 2];
}
}

Solution 3 Moore voting algorithm

As we iterate the array, we look at the current element x:

  1. If the counter is 0, we set the current candidate to x and the counter to 1.
  2. If the counter is not 0, we increment or decrement the counter based on whether x is the current candidate.

After one pass, the current candidate is the majority element. Runtime complexity = O(n).

 public class Solution {
public int majorityElement(int[] nums) {
int length = nums.length;
if (length == 1)
return nums[0];
int maj = nums[0];
int count = 0;
for (int i = 0; i < length; i++) {
if (count == 0) {
maj = nums[i];
count = 1;
} else if (nums[i] == maj) {
count++;
} else {
count--;
}
}
return maj;
}
}

Solution 4 Bit Manipulation

We would need 32 iterations, each calculating the number of 1's for the ith bit of all n numbers. Since a majority must exist, therefore, either count of 1's > count of 0's or vice versa (but can never be equal). The majority number’s ith bit must be the one bit that has the greater count.

Time complexity: 32 * n = T(n)

 public class Solution {
public int majorityElement(int[] nums) {
int length = nums.length;
if (length == 1)
return nums[0];
int[] dig = new int[32];
for (int i = 0; i < length; i++) {
int tmp = nums[i];
for (int j = 0; j < 32; j++) {
dig[j] += tmp & 1;
tmp = tmp >> 1;
}
}
int max = 0;
int tmp = 1;
for (int i = 0; i < 32; i++) {
if (dig[i] > length / 2) {
max = max | tmp;
}
tmp = tmp << 1;
}
return max;
}
}

Majority Element 解答的更多相关文章

  1. Majority Element II 解答

    Question Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. Th ...

  2. [LeetCode] Majority Element II 求众数之二

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...

  3. [LeetCode] Majority Element 求众数

    Given an array of size n, find the majority element. The majority element is the element that appear ...

  4. 【leetcode】Majority Element

    题目概述: Given an array of size n, find the majority element. The majority element is the element that ...

  5. ✡ leetcode 169. Majority Element 求出现次数最多的数 --------- java

    Given an array of size n, find the majority element. The majority element is the element that appear ...

  6. (Array)169. Majority Element

    Given an array of size n, find the majority element. The majority element is the element that appear ...

  7. LeetCode 169. Majority Element

    Given an array of size n, find the majority element. The majority element is the element that appear ...

  8. [UCSD白板题] Majority Element

    Problem Introduction An element of a sequence of length \(n\) is called a majority element if it app ...

  9. Leetcode # 169, 229 Majority Element I and II

    Given an array of size n, find the majority element. The majority element is the element that appear ...

随机推荐

  1. [HEOI 2013 day2] 钙铁锌硒维生素 (线性代数,二分图匹配)

    题目大意 给定两个n阶方阵,方阵B的行i能匹配方阵A的行j当且仅当在第一个方阵中用行向量i替换行向量j后,第一个方阵满秩,显然这是个二分图匹配问题,问是否存在完美匹配,如果存在,还要输出字典序最小的方 ...

  2. python calendar标准库基础学习

    # -*- coding: utf-8 -*-# 作者:新手__author__ = 'Administrator'#标准库:日期时间基础学习:calendar:处理日期#例1import calen ...

  3. [Redux] Passing the Store Down Explicitly via Props

    n the previous lessons, we used this tool to up level variable to refer to the Redux chore. The comp ...

  4. 获取sqlserver数据库中所有库、表、字段名的方法

    获取sqlserver数据库中所有库.表.字段名的方法 2009年03月12日 星期四 下午 12:51 1.获取所有数据库名: SELECT Name FROM Master..SysDatabas ...

  5. html与css的移动端与pc端需要注意的事项

    一个移动端与pc端之间最主要的也就是尺寸问题,苹果与安卓的机型尺寸大小相差甚多,一个尺寸都会影响用户的体验.那么我们来了解一下一些常用的解决方法. 一般在网页中都会在头部有一些这样的代码 <me ...

  6. mysql的锁--行锁,表锁,乐观锁,悲观锁

    一 引言--为什么mysql提供了锁 最近看到了mysql有行锁和表锁两个概念,越想越疑惑.为什么mysql要提供锁机制,而且这种机制不是一个摆设,还有很多人在用.在现代数据库里几乎有事务机制,aci ...

  7. oracle启动,提示“LRM-00109: could not open parameter file”

    转载自   http://blog.sina.com.cn/s/blog_53e731b70101liku.html oracle启动,提示“LRM-00109: could not open par ...

  8. IIS负载均衡相关

    1. IIS负载均衡 (比较简单的例子,能看到效果) 2.nginx+iis实现负载均衡 3.Windows平台分布式架构实践 - 负载均衡 4.Net分布式系统:Keepalived+LVS+Ngi ...

  9. STL set容器添加结构体并排序

    #include <iostream> #include <string> #include <cstring> //strcpy #include <cst ...

  10. SATA接口硬盘加密器

    加密卡置于主板与硬盘.光驱之间,透明实时地对写入数据进行加密,对读出数据进行解密,有效防止信息被窃.未经授权的阅读和修改,以及硬盘.光盘丢失.被盗.废弃.非法用户访问而引发的敏感信息泄密问题,为用户打 ...